IJIOBJUBCKU YHUBEPCUTET “HAUCUN XUJIEHIAPCKI”, BLJITAPUISA
HAYYHU TPYJOBE, TOM 35, KH. 3, 2007 - MATEMATHUKA
PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA

SCIENTIFIC WORKS, VOL. 35, BOOK 3, 2007 - MATHEMATICS

ALGORITHMS FOR GENERATION
OF CIRCUITS AND DRAFTS IN
DISTRIBUTED E-TESTING CLUSTER (DETC)

Asen Rahnev, Olga Rahneva

Abstract. This paper describes author’s algorithms for automatic
generation of circuits, which are used in the tools of the Distributed
e-Testing Cluster (DeTC). These algorithms contribute to solve the prob-
lem with insufficient testing electronic questions in various areas.

The paper describes algorithms for generation of bit-masks, which
define possible connections between the composing elements of circuits;
for generation of circuits; for checking the connections between elements;
for checking the equality of circuits.

There are also presented modified algorithms for generation of bit
masks and circuits, when the composing elements can be connected by
double, triple and more complex connections.

Key words: DeTC, web-based testing, automatic generation, circuitries

1. Introduction

This paper describes author’s algorithms for automatic generation of cir-
cuits. They are applied in the Distributed e-Testing Cluster (DeTC), which
significantly facilitates authors in creating new testing questions, in parameter-
ization of testing questions and in creating classes of testing questions, which
assess same areas of knowledge. Due to their volume, initialization routines are
not included in the code of the algorithms.

This approach is experimented and is being successfully applied in prepa-
ration of tests for the education in Physics, Electronics, Electrical Engineering,
Chemistry, etc.

85

Asen Rahnev, Olga Rahneva

DeTC [1-3] is being developed as a joint project of the ECE Department
at the University of Limerik — Ireland, the Humboldt University in Germany,
the Laboratory for Electronic Trade (ECL), the departments of Computer Tech-
nologies and Computer Systems at the University of Plovdiv, Bulgaria, and the
department of Informatics and Statistics at the University of Food Technolo-
gies, Plovdiv, Bulgaria.

2. Supplementary algorithm for genarating bit masks

The purpose of this algorithm is to generate bit masks, which will deter-
mine for a selected element which its neighbor elements it will connect to. This
algorithm is used by the algorithms which generate circuits.

In the realization the following variables are used:
bitscount — number of bits in the mask;
tmin — minimum number of raised bits;
tmax — maximum number of raised bits;

BM - working array of bits;
tc — number of raised bits.

Code of the algorithm:

void Generate()

{

1. int tc = tmin;

2. Init&retNumInitE1l(BM, O, tmin-1, false);

3. while (true)

4, if (GenNextBitMask(BM,bitscount,tc,tmin,tmax) ==false)
break;

5. done

bool GenNextBitMask(Array BM, int bcount, tc, tmin, tmax)

if (BM[0] == true)

i = 1; while(BM[i]) i++;

if (i >= bcount) return false;

BM[i] = true; tc++;

tc -= Init&retNumInitEl(BM, tmin-tc+i, i-1, false);
else

OO WN P

86

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

6. else

7. if (tc < tmax)

8. if (bcount > 0)

9. M[0] = true; tc++;

10. else

11. return false;

12. else

13. for (i=1; !'BM[i] && i<bcount; i++);

14. j o= i+l

15. while (BM[j1) j++;

16. if (j >= bcount) return false;

17. BM[j] = true; tc++;

18. tc -= Init&retNumInitE1(BM, i, j-1, false);
19. tc += Init&retNumInitE1(BM, O, tmin-tc-1, true);
20. fi

21. fi

22. return true;

Figure 1. Supplementary Algorithm for Generating Bit Masks

3. Algorithm for generating circuits

The purpose of this algorithm is to generate circuits according to pre-
defined elements and rules for connecting them. The algorithm uses heuristic
methods to improve performance by removing repeated combinations. The pro-
cess is improved when elements, selected for connecting with element “level”,
are sorted by a certain criteria and thus defining priorities. For example, if on
every level of recursion the algorithm calculates a coefficient for every element,
which element “level” can be connected to, the elements can be sorted by this
coefficient and the algorithm can select the best next candidates.

In the realization the following variables are used:

Global variables:

M — Matrix of admissible connections;

C — Counter of connections in which elements take place;

Emin — The minimum number of connections an element can take place;
Emax — The maximum number of connections an element can take place;
R — Matrix storing the temporary results.

87

Asen Rahnev, Olga Rahneva

Local variables:

level — level of recursion;

BM - The bit masks of the current level of recursion;

BMM - Provides pointers to map the consequent elements of the bit mask to
their corresponding real elements;

tmax — The minimum number of elements, which element “level” must con-
nection to;

tmin — The maximum number of elements, which element “level” can connec-
tion to;

bitscount — Number of bits in the bit mask;

U — An array storing the elements which need connecting, with the first index of
the array being the number of connections the elements can take part from the
current moment on, subtracted from the number of connections they already
take part in, subtracted from the minimum number of connections needed;

Z — An array, which stores the elements of U with coefficient equal to zero.

Code of the algorithm:

void InitBitsCount(int bitscount, Array Emin, Array EMax,
Array M, int N)

for (i=level+1; i<N; i++)
if (M[levell [i] && EMax[i] > C[il)
U[(N-level-1)-(Emin[i]-C[i])]1[i] = true;
bitscount++;
fi

~ O W NP

void FindMostUrgentElements ()

U.erase(0);
fi

{

1. if (U.count(0))

2. map<int,bool>::iterator uj = U[0].begin();
3. while (uj !'= U[0].end())

4, Z[uj->first] = true; uj++;

5. done

6.

7.

}

88

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

void InitBitscount&BMP(int bitscount, int tmin, int tmax,
Array BMP, Array Z)

{

1. bitscount = 0;

2. map<int,map<int,bool>>::iterator ui = U.begin();
3. while (ui!=U.end())

4. map<int,bool>::iterator uj = ui->second.begin();
5. while (uj != ui->second.end())

6. BMM[bitscount++] = uj->first;

7. uj++;

8. done

9. ui++;

10. domne

11. tmin = Emin[level]l-C[level]l-(int)Z.size();

12. if (tmin < 0) tmin = O;

13. tmax = EMax[level]l-C[level]l-(int)Z.size();

}

void GenCombs(int level=0)

{

1. if (level >= N)

2. PrintResult(); return;

3. fi

4, if (level == 0) RC=0;

5. InitBitsCount (bitscount, Emin, EMax, M, N);

6. FindMostUrgentElements();

7. if (C[levell]+(int)Z.size()-EMax[level] > O ||

8. Emin[level]-C[level]-bitscount > O) return;
9. UpdateResultZ(true);

10. InitBitscount&BMP(bitscount, tmin, tmax, BMP, Z);
11. Init&retNumInitE1l(BM, 0, tmin-1, true);

12. int tc = tmin;

13. while (true)

14. ApplyBitMaskSec();

15. GenCombs (level+1);

16. UndoBitMaskSec() ;

17. if (GenNextBitMask(BM,bitscount,tc,tmin,tmax)==false) break;
18. done

19. UpdateResultZ(false);

}

89

Asen Rahnev, Olga Rahneva

void UpdateResultZ(bool flag)

—~— 00 N O O WN P~

if (flag == true) cval = 1; else cval = -1; fi
mi = Z.begin();
while (mi !'= Z.end())

Clmi->first] += cval;

Rl[level] [mi->first] = flag;

Rmi->first] [levell]

mi++;
done

flag;

void ApplyBitMaskSec()

1.

}

SetBitMask(true);

void UndoBitMaskSec ()

{

1.

}

SetBitMask(false);

void SetBitMask(bool flag)

~ = O 00 NO Ol b WN P

if (flag == true) cval = 1; else cval = -1; fi

mi = BM.begin();

while (mi '= BM.end())
if (mi->second)
C[BMM[mi->first]] += cval;
R[level] [BMM[mi->first]] = flag;

R[BMM[mi->first]] [levell

fi
mi++;

. done

flag;

Figure 2. Algorithm for Generating Circuities

90

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

4. Algorithm for circuit connection check

Some of the generated circuits consist of separate blocks, which have no
connections with one another and are completely separated from the circuit.
The current algorithm filters out such circuits.

In the realization the following variables are used:

Global variables:

M — Matrix of admissible connections;

C — Counter of connections in which elements take place;

Emin — The minimum number of connections an element can take place;
Emax — The maximum number of connections an element can take place;
R — Matrix storing the temporary results.

Local variables:

level — level of recursion;

BM — The bit masks of the current level of recursion;

BMM - Provides pointers to map the consequent elements of the bit mask to
their corresponding real elements;

tmax — The minimum number of elements, which element “level” must con-
nection to;

tmin — The maximum number of elements, which element “level” can connec-
tion to;

bitscount — Number of bits in the bit mask;

U — An array storing the elements which need connecting, with the first index of
the array being the number of connections the elements can take part from the
current moment on, subtracted from the number of connections they already
take part in, subtracted from the minimum number of connections needed;

Z — An array, which stores the elements of U with coefficient equal to zero.

Code of the algorithm:

void trace(int level=0)

{

1. for (int i=0; i<N; i++)

2. if (R[levell] [i] && !'V[il)
3. V[i] = true;

4, trace(i);

5. fi

6. done

}

91

Asen Rahnev, Olga Rahneva

bool validate()

V.clear();
V[0] = true;
trace();
for (int i=0; i<N; i++)
if ('V[i]) return false;
return true;

~— O O WN P

Lines 1-3 of routine GenCombs are changes as follows:

1. if (level >= N)

2 if (validate())

3. // Go through R and report the result
4 return;

5 fi

Figure 3. Algorithm for Circuity Connection Check

5. Algorithm for identification of linear structures in circuits

The purpose of the algorithm is to identify whether two neighbor elements
of the circuit nl and n2 create a linear structure. The algorithm checks the
number of connections of the two elements, excluding the connection between
them. If there is only one connection, then the algorithm assumes that there
exists a liner structure.

In the realization the following variables are used:

Global variables:

N — Number of elements;

M — Matrix of connections, representing the circuit;

V — A supplementary array for marking processed elements;

C — Array with number of connections each element takes part in.

Local variables:

L — An array with the linear structures of the circuit;

N — The current element;

nl and n2 — Elements, for which the algorithm have to identify a linear struc-
ture.

92

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

Code of the algorithm:

void LNext(int n, Array V, Array M)

{

1. for (i=0; i<N; i++)

2. if ((M[n][i] !'= 0) && ('V[il))

3. V[i] = true;

4. LNext (i, V, M);

5. fi

}

bool Linear(int nl, int n2, Array C, Array M)

{

1. if ((M[n1] [n2]!=0) && (C[n11<=2) && (C[n2]<=2)) return true;
2. else

3. V[n1] = true;

4, for (int i=0; i<N; i++)

5. if ((M[n1][i] !'= 0) && ('V[i]) && (i'!'=n2))
6. V[i] = true;

7. LNext(i, V, M);

8. fi

9. fi

10. if (V[n2]) return false;

11. else return true;

-

Figure 4. Algorithm for Identification of Linear Structures in Circuits

6. Algorithm for checking equality of circuits

Two circuits are considered equal if they contain equal linear structures and
connections between them. This algorithm uses the algorithm for identification
of linear structures. It filters out equal circuits.

Routine FindLinear identifies all linear structures of the circuits. Those
are compared and if they are equal, routine BuildCompareMatr is used to
create arrays of connections between the linear structures of both circuits. If
those arrays are equal, the circuits are equal as well.

In the realization the following variables are used:

Global variables:
N — Number of elements.

93

Asen Rahnev, Olga Rahneva

Local variables:

M1 - Matrix of connections, representing the first circuit;

M2 — Matrix of connections, representing the second circuit;

L1 — Array with the linear structures of first circuit;

L2 — Array with the linear structures of second circuit;

C1 — Arrays with connections between the linear structures of first circuit;
C2 — Array with connections between the linear structures of second circuit;
C — Array with connections between the linear structures in M;

M — Matrix of connections;

L — An array with linear structures in M.

Code of the algorithm:

void FLNext(int n, Array M, Array VL, Array L, Array C, int Row)

for (int i=0; i<N; i++)
if (M[n][i] !'= 0))
if (Linear(m, i, C, M) && (!VL[il))
L[Row] [i] = true;
VL[i] = true;
FLNext(i, M, VL, L, C, Row);
fi

0id FindLinear (Array M, Array L)

for (i=0; i<N; i++)
for (j=0; j<N; j++)
if (M[i][j]) C[il++;
Row = 0;
while (true)
for (i=0; i<N; i++)
if (IVL[i]) break;
if (i == N) break;
L[Row] [i] = true;
VL[i] = true;
FLNext(i, M, VL, L, C, Row);
done
Row++;
. done

O 0O ~NO D WNER,rAAS N0 0D WN P A

=
= O

P =
Sow N

-

94

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

void BuildCompareMatr (Array C, Array M, Array L)

for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
if (M[i1[3]1 '= 0)
C[FindKey(i,L)] [FindKey(j,L)] = true;

D W N

bool SimilarityCheck(Array M1, Array M2)

FindLinear(M1, L1);

FindLinear(M2, L2);

if (!Compare(Ll, L2)) return false;
BuildCompareMatr(C1, M1, L1);
BuildCompareMatr(C2, M2, L2);

if (!Compare(Cl, C2)) return false;
return true;

~—~ N O O WN =

Figure 5. Algorithm for Checking Equality of Circuits

7. Modified algorithms

The modified versions of the algorithms overcome a limitation in the prior
versions: the modified versions can work properly with elements, which allow
for different types of connections — double, triple, etc. Such complex connec-
tion types exist in various areas, for example — Chemistry, where connections
between chemical elements can be single, double, triple, etc, corresponding to
the valence of the elements.

In order to model the connections, the matrix of admissible connections has
to be updated into a modified matrixz of admissible connections. The diagonal
of the modified matrix contains zeros and ones, which specify whether the
corresponding element is static or dynamic. Data above the diagonal contains
integer numbers, each number defining the type of connection — single, double,
etc. The connections between elements are complex, because some of them can
connect to each other in more than one way. For example, chemical element C
connects to chemical compound CH by a single, double or triple connection.

95

Asen Rahnev, Olga Rahneva

8. Modified algorithm for generating masks

The algorithm generates masks of integer numbers, which specify for each

element the neighbor ones which it can connect to, and the type of connection
(1 - single, 2 — double, 3 — triple, etc).

N -

In the realization the following variables are used:

Number of elements in the mask;

Sum — The sum we would like to achieve;
BM - A supplementary array;

C -

Sum achieved at the current moment.

void Generate()

~— 00 N O O WN =

Init&retNumInitE1(BM, 1, n-1, 0);
BM[0] = sum;
C = sum;
while (true)
if (n == 0) break;
PrintResult();
if (GenNextIntMask(BM, n, sum, c) == false) break;
done

bool GenNextIntMask(array BM, int bcount, abcount, tmax)

O 00 N O Ul WN -~

[EIEN
= o -

—

int iStart;

if (BM[bcount-1] == tmax) return false;
iStart = bcount-2;

while (BM[iStart] == 0) iStart--;
BM[iStart]--;

abcount—-;

abcount -= BM[bcount-1];

BM[bcount-1] = 0;

BM[iStart+1] = tmax - abcount;

. abcount = tmax;
. return true;

Figure 6. Modified Algorithm for Generating Masks

96

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

9. Modified algorithm for generating circuits

This version of the algorithms checks on every step whether the end ele-
ment of the circuit is reached. If so, the circuit is validated.
In the realization the following variables are used:

N — Number of elements;

M — Matrix of admissible connections;

CC — Counter of connections, in which elements take part in;

Min — Stores the minimum number of connections an element has to take
part in;

Max — Stores the maximum number of connections an element has to take
part in;

R — Matrix, which stored the temporary results;

V — Supplementary array, used in validity check.

Local variables:

level — level of recursion;

BM — The bit masks of the current level of recursion;

BMM - Provides pointers to map the consequent elements of the bit mask to
their corresponding real elements;

tmax — The minimum number of elements, which element “level” must con-
nection to;

tmin — The maximum number of elements, which element “level” can connec-
tion to;

bcount — Number of bits in the bit mask;

abcount — The current sum of values of elements in mask.

void trace(int el=0)

{

1. for (int i=0; i<N; i++)

2. if ((Rlell[i]) && (!V[il))
3. V[i] = true;

4. trace(i);

5. fi

}

bool validate()

{

1 V.clear();
2. V[0] = true;
3. trace();

97

Asen Rahnev, Olga Rahneva

4
5
6
7
8.
9
10.
}

for (int i=0; i<N; i++)
if (Min[i]l>CC[i] || Max[il<CC[i] || 'V[i]) return false;
for (int j=i+1; j<N; j++)
if (R[1][j] && (M[i][j]==0)) return false;
done
done
return true;

bool BMSatisfiesRestrictions(Array BM, Array BMP, Array M,

D W N

Array CC, int bcount, int level)

for (i=0; i<bcount; i++)
if (Max[BMP[i]]-CC[BMP[i]] <BM[i] || BM[i]>M[level] [BMP[i]l])
return false;
return true;

void Generate(int level=0)

O 00 N O Ul WN -~

=
= O

[T S S Sy =
~N o O WwN

—

if (level>N && validate()) PrintResult(); return; fi
if (CC[level] > Max[level]) return;
EvaluateMinMax&Init (tmin, tmax, Min, Max, CC, BMP, bcount) ;
while (tmin <= tmax)
Init&retNumInitEl(BM, 1, N-1, 0);
BM[0] = tmax;
abcount = tmax;
while (true)
ApplyMaskToResult (R, BM, BMP, CC, level);
if (BMSatisfiesRestrictions(BM,BMP, M, CC, bcount,level))
Generate(level+1);
if (bcount == 0) break;
RemoveMaskFromResult (R, BM, BMP, CC, level);
if (GenNextIntMask(BM,bcount,abcount,tmax) ==false) break;
done
tmax—-—;

. done

Figure 7. Modified Algorithm for Generating Circuits

98

Algorithms for Generation of Circuits and Drafts in Distributed E-Testing Cluster

Acknoledgement

This research has been partially supported by the Bulgarian NSF under

Contract No VU-MI 107/2005.

References

[1] Rahneva O., .Rahnev, N. Pavlov, Functional Workflow and Electronic Ser-
vices In a Distributed Electronic Testing Cluster — DeTC, Proceedings
2nd International Workshop on eServices and eLearning, Otto-von-Guericke

Universitaet Magdeburd, 2004, pp 147-157.

[2] Rahnev A., N.Pavlov, O.Rahneva, Architecture & Design of Distributed
Electronic Testing Cluster (DeTC) based on Microsoft .NET Framework —
IMAPS CS International Conference 2005, September 15-16, 2005, Brno,

Czech Republic, pp 417-422.

[3] Rahneva O., A.Rahnev, N.Pavlov, N.Valchanov, Authoring and Auto-
matic Generation of Circuitries and Drafts in Distributed e-Testing Cluster
(DeTC), ELECTRONICS’05, Sozopol, 21-23 Sept. 2005 (to appear).

Asen Rahnev

Faculty of Mathematics and Informatics
University of Plovdiv

236 Bulgaria Blvd.,

4003 Plovdiv, BULGARIA

e-mail: assen@pu.acad.bg

Olga Rahneva

University of Food Technologies
Dept. of Informatics & Statistics
26 Maritsa Str.

4000 Plovdiv, Bulgaria

99

Received 30 October 2005

Asen Rahnev, Olga Rahneva

AJITOPUTMU 3A TEHEPIPAHE HA
CXEMU N YEPTE2KIN B PA3IIPEJIEJIEH K/IbCTEP
3A EJIEKTPOHHO TECTBAHE (DETC)

Acen Paxues, Osira PaxaeBa

Pesrome. B tazn pabora ce onucBaT aBTOPCKH AJITOPUTMHU 33 ABTOMATHIHO
reHepupaHe Ha CXeMHU, KOUTO Ce U3I0JI3BAT OT MHCTPYMEHTHUTE B Pa3IpeIeeHns
kiaberep 3a enekrponno rtecrBane — DeTC (Distributed eTesting Cluster).
Te3u asropuTMu CrioMaraT 3a IpeoIoIsiBaHe Ha MpobieMa, CBbP3aH ¢ HeI0CTa-
THIHOTO KOJUIECTBO TECTOBU €JIEKTPOHHU BBIPOCH B PEIUIA OOJACTH.

Pazryeanm ca anropnT™u 3a reHepupane Ha OUTOBM MACKH 3 ONPeIeIsiHe
HA BDB3MOXKHOCTH 33 CBbP3BaHE HA ChCTABANIMTE €JEMEHTH Ha CXEeMUTe, 3a
reHepupaHe Ha CX€MH, 33 IPOBEPKa HA BPDH3KUTE MEXK/y eJIEMEHTHUTE, 33 [pPO-
BEPKA 32 eIHAKBOCT MEXKY PA3JTUIHU CXEMHU.

IIpencraBenn ca MommHIMpPAHU AJTOPUTMHU 33 TeHEpUpaHe Ha OUTOBH
MACKU U CXEMU, B KOUTO ChCTABIAIIATE €JIEMEHTH MOTAT 3 CE CBbP3BAT IIOMEXK/1y
CH 4pe3 OBONHU, TPOWHU U IO-CJIOKHU BPB3KU.

100

