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1. Introduction

Many authors have discussed the integral stability [5]-[10] and the
LP-stability [11]-[14].

In paper [15] the author introduces a new stability notion called LP-integral
stability.

Lyapunov’s second method is a very useful and powerful instrument in
discussing the stability of the solutions of differential equations. Its power and
usefulness lie in the fact that a decision is made by investigating the differential
equations themselves and not by finding solutions of the differential equations.
However, it is very difficult to find Lyapunov function satisfying certain con-
ditions. Therefore, it is important to obtain a weak sufficient condition for a
stability theorem.

In this paper, by using Lyapunov’s second method and the comparison
principle, we will state some sufficient conditions of the LP-stability and the
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LP-integral stability of solutions of the ordinary differential equations in terms
of two measures.

2. Notations and definitions

Let Ry = [0,00), R™ denote Euclidean n-space. For z € R™, let ||z|| be
any norm of x and Sy = {z : ||z|| < H}, H = const > 0.

We shall denote by C[Ry x R™, R"] the set of all continuous functions
defined on Ry x R™ valued in R".

We consider the system of differential equations

(2.1) b= f(ta), f(,0),=0
where f(t,z) € C[Ry x R™, R"], and its perturbed system
(22) &= f(t,z) + F(t, z),

where F(t,z) € C[R+ x R", R"].

Suppose that f(t,z) and F(t,z) are smooth enough to ensure existence,
uniqueness and continuous dependence of the solutions of the initial valued
problem associated with the systems (2.1), (2.2).

Furthermore, consider a scalar differential equation

(2.3) u=g(tu), g(t0)=0,
where g(t,u) € C[R%, R], and its perturbed equation
(2.4) i = g(t,u) + G(t, w),

where G(t,u) € C[R%, R].

Suppose that g(¢,u) and G(t,u) are smooth enough to ensure existence,
uniqueness and continuous dependence of the solutions of the initial value prob-
lem associated with equations (2.3), (2.4).

Throughout this paper, a solution of system (2.1) through a point (¢g, xg) €
R, x R™ will be denoted by such a form as z(t) = (¢ to,x0), where
x(to) = x(to; to, To) = To-

Let the function V € C[Ry x R", R;] and we define the function

1
DtV (t,x) = liIélJr sup —{V(Et+rz+7f(t,z)) —V(tx)}
T— T
for each (t,z) € Ry x R™.
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Let us list the following classes of functions and definitions for convenience.

K = {o€(C[R4+,Ry]:0(v) is strictly increasing and o(0) = 0},
CK = {0€C[R},Ry]:0(t,v) € K foreach t€ R.},
I' = {heC[Ry x R",Ry]:infh(t,z) =0,(t,x) € Ry x R"},
I'hb = {hel: wiengnh(tm) =0 foreach te€ R;}.

Definition 2.1. [1]. Let ho,h € I'. Then we say that:

(i) ho is finer than h if there exist a p > 0 and a function ¢ € CK such
that ho(t,z) < p implies h(t,z) < @(t, ho(t, x));

(ii) ho is uniformly finer than h if in (i) ¢ is independent of ¢, that is,
p € K.

Definition 2.2. [2]. Let V € C[R4+ x R™,Ry] and hg,h € I'. Then V is
said to be:

(i) h-positive definite if there exist a p > 0 and a function b € K such that
h(t,z) < p implies b(h(t,z)) < V (¢, x);

(ii) ho-decrescent if there exist a py > 0 and a function a € K such that
ho(t,x) < po implies V (¢, z) < a(ho(t, z));

(iil) weakly ho-decrescent if there exist a pg > 0 and a function a € CK
such that ho(t,x) < po implies V (¢, z) < a(t, ho(t, z)).

Definition 2.3. [3]. System (2.1) is said to be:

(i) (ho, h)-equistable, if for each ¢ > 0 and ¢y € R4 there exists a
d = §(to,e) > 0, that is continuous in to for each € such that ho(tg,zo) < 6
implies h(t,z(t)) < e for all t > t¢;

(ii) uniformly (ho, h)-stable, if (i) holds with ¢ being independent of t.

Definition 2.4. System (2.1) is said to be:
(i) LP—(hg, h)-equistable, where p is a positive integer, if it is (hg, h)-
equistable and there exists a dg = Jo(tg) > 0 such that hg(to, o) < dp implies

(2.5) / B2 (8, 2(8))dt < 0o

(ii) uniformly LP—(hg, h)-stable, where p is a positive integer, if it is uni-
formly (ho, h)-stable, the dp in (i) is independent of ¢y and the integral (2.5)
converges uniformly in #g;

(iii) LP—(ho, h)-integrally stable, where p is a positive integer, if it is
(ho, h)-equistable and for each e > 0 and ¢ty € R4 there exist a d; = d1(tg,&) >0
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and a da = 85(tg, ) > 0 such that ho(to, z9) < 61 and [ sup ||F(¢,z)||dt < &2
toh(t,z)<e

oo

implies [hP(t,z*(t))dt < oo, where z*(t) = x*(t;t9, zo) denotes a solution of
to

the perturbed system (2.2) satisfying an initial condition z*(to; ¢, o) = 2o.

Definition 2.5. The trivial solution u = 0 of equation (2.3) is said to be:
(i) L'-stable, if it is stable and there exists a &; = d%(to) > 0 such that
up < &g implies

oo

(2.6) /u(t; to, uo)dt < o0,

to

where u(t) = u(t;to,uo) is a solution of equation (2.3), satisfying an initial
condition u(to;to, uo) = uo;

(ii) uniformly L'-stable, if it is uniformly stable, the &; in (i) is independent
of ¢ty and the integral (2.6) converges uniformly in ¢o;

(iii) L'-integrally stable, if it is stable and if for each ¢ > 0 and ty € R,
there exist a n; = 11 (tg,€) > 0 and a 12 = n2(tg,€) > 0 such that uy < n; and
o0 oo
[sup|G(t,u)|dt < no implies [u*(t;to, uo)dt < oo , where u*(t) = u*(t;t0, uo)
tou<e to
is a solution of the perturbed equation (2.4) satisfying an initial condition
’U,*(t(); t(), ’LL()) = Ug-

3. Preliminary results

Theorem 3.1. Let V € C[Ry x R",R.] and V(t,x) be locally Lip-
schitzian in x. Assume that function DTV (t,u) satisfies DTV(o1)(t,x) <
g(t,V(t,z)), (t,z) € Ry x R™, where g € C[R%,R]. Let r(t) = r(t;to,uo)
be the maximal solution of the equation (2.3).

Then V (to,z0) < wug implies V(¢t,z(t)) < r(t) for each t > ty, where
x(t) = x(t;to, o) Is any solution of system (2.1).

For the proof, see [3].

Theorem 3.2. Assume that:

(i) ho,h € T and hg is finer than h;

(ii)) V € C[R+ x R™, Ry], V(t, x) is locally Lipschitzian in x, V is h-positive
definite and weakly hg-decrescent;
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(iii) g € C[R%, R] and g(t,0) = 0;

(iv) DY Vo) (t,x) < g(t, V(t,x)), (t,x) € S(h,p) for some p = const > 0,
where S(h,p) = {(t,z) € Ry x R™ : h(t,z) < p}.

Then, the stability of the trivial solution uw = 0 of equation (2.3) implies
the (ho, h)-equistability of system (2.1).

For the proof, see [3].

Theorem 3.3. Assume that:

(i) ho, h € T and hg is uniformly finer than h;

(ii)) V € C[R+ xR", R], V(t, ) is locally Lipschitzian in x, V is h-positive
definite and hg-decrescent;

(iii) g € C[R%, R] and g(t,0) = 0;

(iv) D Vo) (t,z) < g(t, V(t,x)) for (t,x) € S(h, p).

Then, the uniform stability of the trivial solution u = 0 of equation (2.3)
implies the uniform (hg, h)-stability of system (2.1).

For the proof, see [3].

Theorem 3.4. Assume that:

(i) V€ C|[Rx x R",Ry], h € T, V(t,x) is locally Lipschitzian in x and
h-positive definite;

(ii) D™ Vio.1y(t,z) < 0 for (t,z) € S(h, p).

Then

(A) if, in addition, hg € T, hg is finer than h and V (t,z) is weakly
ho-decrescent, then system (2.1) is (hg, h)-equistable;

(B) if, in addition, hy € T',hq is uniformly finer than h and V(t,z) is
ho-decrescent, then system (2.1) is uniformly (hg, h)-stable.

For the proof, see [4].

4. Main results

Theorem 4.1. Assume that:

(i) ho,h € " and hg is finer than h;

(ii) g € C[R?, R] and ¢(t,0) = 0;

(iii) V. € C[R+ x R™,Ry], V(t,0) = 0, V(t,x) is locally Lipschitzian
in x and weakly hg-decrescent and AhP(t,x) < V(t,x), A = const > 0, for
(t,z) € S(h, p);

(iv) DT Vio1y(t,z) < g(t,V (t,x)) for (t,x) € S(h,p).

Then the L!-stability of the trivial solution u = 0 of equation (2.3) implies
the LP—(hg, h)-equistability of system (2.1).
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Proof. Since the trivial solution u = 0 of equation (2.3) is L!-stable, it
is stable and there exists a 0§ = d5(to) > 0 such that ufy < §; implies (2.6).
By Theorem 3.2, the system (2.1) is (hg, h)-equistable. Thus, for each € > 0
and to € Ry there exists a § = §(tg,€) > 0 such that hg(tg,z¢) < 0 implies
h(t,z(t)) < € for all t > to.

We shall show that there exists a dg = do(to) > 0 such that hg(tg, zo) < do
implies (2.5). Since V(t,x) is weakly hg-decrescent, for a given 5 and any
to € Ry, there exist a dg = dg(tp) > 0 and a function a € CK such that for
(to, o) € S(ho,d0), V(to,zo) < alto, ho(to, o))

Choose § = d(tg,e) such that § € (0,d0], a(to,d) < &f and let
ho(to, xo) < dg. We set ug = V (o, zp). By using condition (iii) of the theorem
and Theorem 3.1, we have

V(t,lﬂ(t;to,xo)) < T(t; tO;UO); t > t07

where x(t) = x(t; to, zo) is any solution of system (2.1) such that ho(to, zo) < do
and r(t) = r(t;to, up) is the maximal solution of the equation (2.3). From this,
it follows that

ARP(t, (1)) < V(¢ z(t)) < r(t;to, uo)

and hence - -
/hp(t,x(t))dt < 1/A/r(t,to,uo)dt < 0.
to to
Thus, the proof is completed. O

Theorem 4.2. Assume that:

(i) ho, h € T and hg is uniformly finer than h;

(ii) g € C[R%, R] and ¢(t,0) = 0;

(iii) V € C[R4+ x R",Ry], V(¢,0) =0, V(t,z) is locally Lipschitzian in x
and hg-decrescent and

ARP(t,z(t)) < V(t,z), A=const >0 for (t,x) € S(h,p);

(IV) D+‘/V(2A1)(t7 .13) < g(ta V(ta .13)) for (ta JT) € S(ha p)
Then the uniform L'-stability of the trivial solution u=0 of equation (2.3)
implies uniform LP—(hg, h)-stability of system (2.1).

Proof. From Theorem 3.3, the system (2.1) is uniformly (ho, h)-stable.
Since the trivial solution u = 0 of equation (2.3) is uniformly L!-stable, there
exists a 6§ > 0 such that ug < d3 implies (2.6) and the integral (2.6) converges

124



On the LP-Stability and the LP-Integral Stability of Non-Linear Differential ...

uniformly in tg. To prove that the integral (2.5) converges uniformly in ¢, we
follow the proof of Theorem 4.1 and choose ug = a(ho(to,xo)), where a € K,
thereby deducing 6 = a=1(d;), where § € (0,80]. Let ho(to, 7o) < &o. It
is evident that dy is independent of ¢ty and integral (2.5) converges uniformly
in to. [l

Theorem 4.3. Assume that:

(i) ho, h € T and hg is uniformly finer than h;

(ii) g € C[R?, R] and ¢(t,0) = 0;

(iii) V € C[Ry x R™,R], V(t,0) =0, V(¢,z) is locally Lipschitzian in x,
V' is h-positive definite and weakly hy-decrescent;

(iv) Dy Vig1y(t,z) < —ChP(t,z), C = const > 0, for (t,x) € S(h,p).

Then system (2.1) is LP—(hg, h)-equistable.

Proof. By Theorem 3.4, it follows that the system (2.1) is (hg, h)-
equistable. Thus, for each € > 0 and ¢ty € Ry there exists a § = §(tg,e) > 0
such that ho(to,xo) < ¢ implies h(t, z(t)) < e for all ¢ > to.

We shall show that there exists a dg = do(tp) > 0 such that ho(to, zo) < do
implies (2.5). We define

t

m(t) =V (¢ z(t)) + C/hp(t,x(t))dt.

to

By condition (iv) of the theorem, we have D¥m(t) = DTV(o1(t, z(t)) +
ChP(t,z(t)) <0.
This implies that m(t) is nonincreasing, therefore m(t) < m(ty) and

/hp(t,x(t))dt < mlty)/C = V(to,20)/C for > to.

to

Thus, the proof is completed. O

Theorem 4.4. Assume that:

(i) ho, h € T and hg is uniformly finer than h;

(ii) g € C[R3, R] and g(t,0) = 0;

(iii)) V. € C[R+ x R™, R4], V(¢,0) =0, V (t,z) is locally Lipschitzian in x,
h-positive definite and hy-decrescent;

(iv) D Via1)(t,x) < —ChP(t,z), C = const > 0, for (t,x) € S(h, p).

Then system (2.1) is uniformly LP—(hg, h)-stable.
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Proof. Condition (iv) of the theorem, in virtue of condition (iii), reduces
to DT Vio.1y(t,x) < g(t, V (L, x)), where g(t,u) = —(C/B)u, and hence it is easy
to check that the trivial solution u = 0 of equation (2.3) is uniformly L!-stable.
Therefore, from Theorem 4.2, the system (2.1) is uniformly LP—(hg, h)-stable.

]

Theorem 4.5. Let ho,h € I'. System (2.1) is LP—(ho, h)-integrally stable
if and only if for each € > 0 and ty € R4 there exist a 01 = 01(to,e) > 0 and
a 02 = 0a(to,e) > 0 such that if ®(t) is any continuous function defined on

[to, 00] and satisfies [||®(t)||dt < & then for any solution y(t) = y(t,to,yo) of
to

the system

(4.1) g =[f(t,y)+ ()

oo
for which ho(to,yo) < 81 the inequality [hP(t,y(t))dt < oo is verified.
to
Proof. The necessity of the condition is clear. Therefore it suffices
to prove that if the property from the statement occurs, the system (2.1) is
—(ho, h)-integrally stable.
Let F(t,z) besuch that [ sup |F(t, z)||dt < &2, where 6o = d2(tg, ) > 0
toh(t,x)<e
is one given the condition. Consider (to,zo) with ho(to,z0) < 1 and the
solution z*(t) = x*(¢;tg, xo) of the perturbed system (2.2).

If we would not have [hP(t,z*(t))dt < oo, there exists the first point
to
t
t1 > to, fh” t,x*(t))dt = co and [hP(t,x*(t))dt < oo for all ¢ € [to,t1). For

to
any t € [to,tl) take ®(t) = F(t,x*(t)), we have

/Hcp ||dt</ sup [ (1,7 (1)) < 3
h(ta ()<

We extend ®(t) continuously on the whole semiaxis ¢ > tg such that

f||<I>* (t)|ldt < 2, where ®*(t) is a extended function, for this it is sufficient to

62 tOy f”q) ||dt

take to > t; such that to —¢; < , D" (t) = ®(¢t) for all
1+ ||‘1>(t1)||
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t € [to,t1) linear on [t1,t2), where we put ®*(¢3) = 0, and zero for all ¢ > ¢;.
We consider the following system

(4.2) y=fty)+ (1)
Now let y*(t) = y*(t;to, xo) be a solution of system (4.2).
From ho(to,z0) < 01 and [@*(t)dt < &2, we have [hP(t,y*(t))dt < oc.
to to

ty
Hence [hP(t,y*(t))dt < oco. But we have y*(t;to, xo) = *(¢;t0,20) on (to,t1)
to

ty

hence [hP(t,z*(t))dt < oo which is contradictory. Therefore, the system (2.1)
to

is LP—(hg, h)-integrally stable. O

Theorem 4.6. Assume that:

(i) ho, h € T and hg is finer than h;

(ii) g € C[R3, R] and ¢(t,0) = 0;

(iii) V. € C[Ry x R™,Ry], V(t,0) = 0, V is weakly ho-decrscent and
AnP(t,z) <V (t,x), A=const >0, for (t,z) € S(h,p);

(iv) |[V(t,x) — V(t,2')| < M|z — 2’| for any (t,x), (t,2') € S(h,H)
(H = const > 0), where M = const > 0;

(v) DTVioy(t,x) < g(t,V(t,x)) for (t,z) € S(h,p).

If the trivial solution u = 0 of equation (2.3) is L'-integrally stable, then
system (2.1) is LP—(hg, h)-integrally stable.

Proof. By Theorem 3.2 system (2.1) is (ho, h)-equistable. Thus, for each
e > 0 and tp € Ry there exists a § = 0(tg,e) > 0 such that hg(to, o) < &
implies h(t, z(t)) < ¢ for all t > ¢.

Since the trivial solution u = 0 of equation (2.3) is L'-integrally stable,
it is stable and for each € > 0 and ¢y € Ry there exist a 1 = n1(to,€) > 0
and a 12 = n2(to,&) > 0 such that up < 7y and [sup|G(t,u)|dt < e implies

tou<e
oo
Ju*(t, to, up)dt < oo, where u*(t) = u*(t; to, uo) is the solution of the perturbed
to
equation (2.4).

Since V (¢, ) is weakly ho-decrescent, for given 1y > 0 and ¢y € R4, there
exist a d1 = (&,m1,t0) = d1(¢,t9) > 0 and a function a € CK such that for
(t(), xo) € S(ho, (51), V(to, {I?o) < a(to, ho(to, (E()))

Choose & = §(to, €) such that § = (0, é1], a(to,d) < m and let
ho(to, o) < d1. We set ug = V(tg, zp). Hence 0 < ug < 1.
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Given 1o < 0, there exists a o = da2(tg, €) > 0 such that §y < min(ny/M, J).
By using condition (v) of the theorem
D Vig.p)(t,2) < D V(o) (t,2) + M[|F(t,2)|| < g(t,V (t,2)) + M| F(t,x)]|.

We put A(t) = MJ||F(t,x*(t;to, x0))||, where x*(t) = x*(¢;t0,x0) is the
solution of the perturbed system (2.2) such that hg(tg,z0) < d1.
For this function A(t), we consider the following scalar equation

(4.3) U= g(t,u) + ().

Because h(t,x(t)) < ¢ for all t > ¢, satisfying the condition hg(to, zo) < d1,
we get

/ A(tydt = M / VF(t, " (t: to, 20)) |t <

to to

ta*(t))<e

SM/ sup  ||F(t, ™ (t))||dt < Md2 < 2.
h(
to

By Theorem 4.5, we have

(4.4) /r*(t;to, ug)dt < 00,
to
where r*(t) = 7*(t;t0,up) is the maximal solution of the equation (4.3) such

that ug < 1.
Moreover, from Theorem 3.1 we obtain that V (¢, 2¢) < ug implies

(4.5) V(t,z*(t)) < r*(t;to,uo) for all t > t.
For each € > 0 and tg € R4, using ¢; and &5 defined above, we claim
that system (2.1) is L?—(hg, h)-integrally stable, whenever hq(to, zo) < 01 and

[ sup ||F(t,z)||dt < .
toh(t,x)<e

By using condition (iii) of the theorem and relations (4.4) and (4.5), it
follows that ARP(t,x*(t)) < V (¢, 2*(t;t0, x0)) < 7*(;t0, uo), and hence

oo o0

/hp(t,x*(t))dt < 1/A/r*(t;to,u0)dt < 0.

to to

This proves that system (2.1) is LP—(hg, h)-integrally stable. O
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BbPXY LP-YCTOMYNBOCTTA U
LP-MHTEI'PAJTHATA YCTOMYMBOCT HA
HEJIMHENHU JINO®EPEHIINAJIHI YPABHEHU A
ITO OTHOLIEHUMNE HA IBE MEPKU

NBan K. Pycumos

Pesrome. Hamepenn ca HOBM gocTarbaHd YCa0BUS 33 LP-ycroiiamBocT
u LP-ummrerpasHa yCcTONYMBOCT HA HEIUHEHHU CHCTEMHU OT AudeEepPeHIraTHA
YPaBHEHWSA 10 OTHOINEHWE HA JB€ MEPKN, KATO CE W3MOJ3BAT BTOPUS METO
Ha JIAMyHOB M NPWHNKIIA HA CDABHEHUETO.
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