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1. Introduction

Many authors have discussed the integral stability [5]–[10] and the
Lp-stability [11]–[14].

In paper [15] the author introduces a new stability notion called Lp-integral
stability.

Lyapunov’s second method is a very useful and powerful instrument in
discussing the stability of the solutions of differential equations. Its power and
usefulness lie in the fact that a decision is made by investigating the differential
equations themselves and not by finding solutions of the differential equations.
However, it is very difficult to find Lyapunov function satisfying certain con-
ditions. Therefore, it is important to obtain a weak sufficient condition for a
stability theorem.

In this paper, by using Lyapunov’s second method and the comparison
principle, we will state some sufficient conditions of the Lp-stability and the
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Lp-integral stability of solutions of the ordinary differential equations in terms
of two measures.

2. Notations and definitions

Let R+ = [0,∞), Rn denote Euclidean n-space. For x ∈ Rn, let ‖x‖ be
any norm of x and SH = {x : ‖x‖ < H}, H = const > 0.

We shall denote by C[R+ × Rn, Rn] the set of all continuous functions
defined on R+ ×Rn valued in Rn.

We consider the system of differential equations

(2.1) ẋ = f(t, x), f(t, 0),≡ 0

where f(t, x) ∈ C[R+ ×Rn, Rn], and its perturbed system

(2.2) ẋ = f(t, x) + F (t, x),

where F (t, x) ∈ C[R+ ×Rn, Rn].
Suppose that f(t, x) and F (t, x) are smooth enough to ensure existence,

uniqueness and continuous dependence of the solutions of the initial valued
problem associated with the systems (2.1), (2.2).

Furthermore, consider a scalar differential equation

(2.3) u̇ = g(t, u), g(t, 0) ≡ 0,

where g(t, u) ∈ C[R2
+, R], and its perturbed equation

(2.4) u̇ = g(t, u) + G(t, u),

where G(t, u) ∈ C[R2
+, R].

Suppose that g(t, u) and G(t, u) are smooth enough to ensure existence,
uniqueness and continuous dependence of the solutions of the initial value prob-
lem associated with equations (2.3), (2.4).

Throughout this paper, a solution of system (2.1) through a point (t0, x0) ∈
R+ × Rn will be denoted by such a form as x(t) = x(t; t0, x0), where
x(t0) = x(t0; t0, x0) = x0.

Let the function V ∈ C[R+ ×Rn, R+] and we define the function

D+V(2.1)(t, x) = lim
τ→0+

sup
1
τ
{V (t + τ, x + τf(t, x))− V (t, x)}

for each (t, x) ∈ R+ ×Rn.
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Let us list the following classes of functions and definitions for convenience.

K = {σ ∈ C[R+, R+] : σ(ν) is strictly increasing and σ(0) = 0},
CK = {σ ∈ C[R2

+, R+] : σ(t, ν) ∈ K for each t ∈ R+},
Γ = {h ∈ C[R+ ×Rn, R+] : inf h(t, x) = 0, (t, x) ∈ R+ ×Rn},

Γ0 = {h ∈ Γ : inf
x∈Rn

h(t, x) = 0 for each t ∈ R+}.

Definition 2.1. [1]. Let h0, h ∈ Γ. Then we say that:
(i) h0 is finer than h if there exist a ρ > 0 and a function ϕ ∈ CK such

that h0(t, x) < ρ implies h(t, x) ≤ ϕ(t, h0(t, x));
(ii) h0 is uniformly finer than h if in (i) ϕ is independent of t, that is,

ϕ ∈ K.

Definition 2.2. [2]. Let V ∈ C[R+ × Rn, R+] and h0, h ∈ Γ. Then V is
said to be:

(i) h-positive definite if there exist a ρ > 0 and a function b ∈ K such that
h(t, x) < ρ implies b(h(t, x)) ≤ V (t, x);

(ii) h0-decrescent if there exist a ρ0 > 0 and a function a ∈ K such that
h0(t, x) < ρ0 implies V (t, x) ≤ a(h0(t, x));

(iii) weakly h0-decrescent if there exist a ρ0 > 0 and a function a ∈ CK
such that h0(t, x) < ρ0 implies V (t, x) ≤ a(t, h0(t, x)).

Definition 2.3. [3]. System (2.1) is said to be:
(i) (h0, h)-equistable, if for each ε > 0 and t0 ∈ R+ there exists a

δ = δ(t0, ε) > 0, that is continuous in t0 for each ε such that h0(t0, x0) < δ
implies h(t, x(t)) < ε for all t ≥ t0;

(ii) uniformly (h0, h)-stable, if (i) holds with δ being independent of t0.

Definition 2.4. System (2.1) is said to be:
(i) Lp−(h0, h)-equistable, where p is a positive integer, if it is (h0, h)-

equistable and there exists a δ0 = δ0(t0) > 0 such that h0(t0, x0) ≤ δ0 implies

(2.5)

∞∫

t0

hp(t, x(t))dt < ∞;

(ii) uniformly Lp−(h0, h)-stable, where p is a positive integer, if it is uni-
formly (h0, h)-stable, the δ0 in (i) is independent of t0 and the integral (2.5)
converges uniformly in t0;

(iii) Lp−(h0, h)-integrally stable, where p is a positive integer, if it is
(h0, h)-equistable and for each ε > 0 and t0 ∈ R+ there exist a δ1 = δ1(t0, ε) > 0
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and a δ2 = δ2(t0, ε) > 0 such that h0(t0, x0) < δ1 and
∞∫
t0

sup
h(t,x)≤ε

‖F (t, x)‖dt < δ2

implies
∞∫
t0

hp(t, x∗(t))dt < ∞, where x∗(t) = x∗(t; t0, x0) denotes a solution of

the perturbed system (2.2) satisfying an initial condition x∗(t0; t0, x0) = x0.

Definition 2.5. The trivial solution u = 0 of equation (2.3) is said to be:
(i) L1-stable, if it is stable and there exists a δ∗0 = δ∗0(t0) > 0 such that

u0 ≤ δ∗0 implies

(2.6)

∞∫

t0

u(t; t0, u0)dt < ∞,

where u(t) = u(t; t0, u0) is a solution of equation (2.3), satisfying an initial
condition u(t0; t0, u0) = u0;

(ii) uniformly L1-stable, if it is uniformly stable, the δ∗0 in (i) is independent
of t0 and the integral (2.6) converges uniformly in t0;

(iii) L1-integrally stable, if it is stable and if for each ε > 0 and t0 ∈ R+

there exist a η1 = η1(t0, ε) > 0 and a η2 = η2(t0, ε) > 0 such that u0 < η1 and
∞∫
t0

sup
u≤ε

|G(t, u)|dt < η2 implies
∞∫
t0

u∗(t; t0, u0)dt < ∞ , where u∗(t) = u∗(t; t0, u0)

is a solution of the perturbed equation (2.4) satisfying an initial condition
u∗(t0; t0, u0) = u0.

3. Preliminary results

Theorem 3.1. Let V ∈ C[R+ × Rn, R+] and V (t, x) be locally Lip-
schitzian in x. Assume that function D+V (t, u) satisfies D+V(2.1)(t, x) ≤
g(t, V (t, x)), (t, x) ∈ R+ × Rn, where g ∈ C[R2

+, R]. Let r(t) = r(t; t0, u0)
be the maximal solution of the equation (2.3).

Then V (t0, x0) ≤ u0 implies V (t, x(t)) ≤ r(t) for each t ≥ t0, where
x(t) = x(t; t0, x0) is any solution of system (2.1).

For the proof, see [3].

Theorem 3.2. Assume that:
(i) h0, h ∈ Γ and h0 is finer than h;
(ii) V ∈ C[R+×Rn, R+], V (t, x) is locally Lipschitzian in x, V is h-positive

definite and weakly h0-decrescent;
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(iii) g ∈ C[R2
+, R] and g(t, 0) ≡ 0;

(iv) D+V(2.1)(t, x) ≤ g(t, V (t, x)), (t, x) ∈ S(h, ρ) for some ρ = const > 0,
where S(h, ρ) = {(t, x) ∈ R+ ×Rn : h(t, x) < ρ}.

Then, the stability of the trivial solution u = 0 of equation (2.3) implies
the (h0, h)-equistability of system (2.1).

For the proof, see [3].

Theorem 3.3. Assume that:
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+×Rn, R+], V (t, x) is locally Lipschitzian in x, V is h-positive

definite and h0-decrescent;
(iii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iv) D+V(2.1)(t, x) ≤ g(t, V (t, x)) for (t, x) ∈ S(h, ρ).
Then, the uniform stability of the trivial solution u = 0 of equation (2.3)

implies the uniform (h0, h)-stability of system (2.1).

For the proof, see [3].

Theorem 3.4. Assume that:
(i) V ∈ C[R+ × Rn, R+], h ∈ Γ, V (t, x) is locally Lipschitzian in x and

h-positive definite;
(ii) D+V(2.1)(t, x) ≤ 0 for (t, x) ∈ S(h, ρ).
Then
(A) if, in addition, h0 ∈ Γ, h0 is finer than h and V (t, x) is weakly

h0-decrescent, then system (2.1) is (h0, h)-equistable;
(B) if, in addition, h0 ∈ Γ, h0 is uniformly finer than h and V (t, x) is

h0-decrescent, then system (2.1) is uniformly (h0, h)-stable.

For the proof, see [4].

4. Main results

Theorem 4.1. Assume that:
(i) h0, h ∈ Γ and h0 is finer than h;
(ii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iii) V ∈ C[R+ × Rn, R+], V (t, 0) = 0, V (t, x) is locally Lipschitzian

in x and weakly h0-decrescent and Ahp(t, x) ≤ V (t, x), A = const > 0, for
(t, x) ∈ S(h, ρ);

(iv) D+V(2.1)(t, x) ≤ g(t, V (t, x)) for (t, x) ∈ S(h, ρ).
Then the L1-stability of the trivial solution u = 0 of equation (2.3) implies

the Lp−(h0, h)-equistability of system (2.1).
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Proof. Since the trivial solution u = 0 of equation (2.3) is L1-stable, it
is stable and there exists a δ∗0 = δ∗0(t0) > 0 such that u∗0 ≤ δ∗0 implies (2.6).
By Theorem 3.2, the system (2.1) is (h0, h)-equistable. Thus, for each ε > 0
and t0 ∈ R+ there exists a δ = δ(t0, ε) > 0 such that h0(t0, x0) < δ implies
h(t, x(t)) < ε for all t ≥ t0.

We shall show that there exists a δ0 = δ0(t0) > 0 such that h0(t0, x0) ≤ δ0

implies (2.5). Since V (t, x) is weakly h0-decrescent, for a given δ∗0 and any
t0 ∈ R+, there exist a δ0 = δ0(t0) > 0 and a function a ∈ CK such that for
(t0, x0) ∈ S(h0, δ0), V (t0, x0) ≤ a(t0, h0(t0, x0)).

Choose δ = δ(t0, ε) such that δ ∈ (0, δ0], a(t0, δ) < δ∗0 and let
h0(t0, x0) < δ0. We set u0 = V (t0, x0). By using condition (iii) of the theorem
and Theorem 3.1, we have

V (t, x(t; t0, x0)) ≤ r(t; t0, u0), t ≥ t0,

where x(t) = x(t; t0, x0) is any solution of system (2.1) such that h0(t0, x0) ≤ δ0

and r(t) = r(t; t0, u0) is the maximal solution of the equation (2.3). From this,
it follows that

Ahp(t, x(t)) ≤ V (t, x(t)) ≤ r(t; t0, u0)

and hence ∞∫

t0

hp(t, x(t))dt ≤ 1/A

∞∫

t0

r(t, t0, u0)dt < ∞.

Thus, the proof is completed. ¤

Theorem 4.2. Assume that:
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iii) V ∈ C[R+ ×Rn, R+], V (t, 0) = 0, V (t, x) is locally Lipschitzian in x

and h0-decrescent and

Ahp(t, x(t)) ≤ V (t, x), A = const > 0 for (t, x) ∈ S(h, ρ);

(iv) D+V(2.1)(t, x) ≤ g(t, V (t, x)) for (t, x) ∈ S(h, ρ).
Then the uniform L1-stability of the trivial solution u=0 of equation (2.3)

implies uniform Lp−(h0, h)-stability of system (2.1).

Proof. From Theorem 3.3, the system (2.1) is uniformly (h0, h)-stable.
Since the trivial solution u = 0 of equation (2.3) is uniformly L1-stable, there
exists a δ∗0 > 0 such that u0 ≤ δ∗0 implies (2.6) and the integral (2.6) converges
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uniformly in t0. To prove that the integral (2.5) converges uniformly in t0, we
follow the proof of Theorem 4.1 and choose u0 = a(h0(t0, x0)), where a ∈ K,
thereby deducing δ = a−1(δ∗0), where δ ∈ (0, δ0]. Let h0(t0, x0) < δ0. It
is evident that δ0 is independent of t0 and integral (2.5) converges uniformly
in t0. ¤

Theorem 4.3. Assume that:
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iii) V ∈ C[R+ ×Rn, R+], V (t, 0) = 0, V (t, x) is locally Lipschitzian in x,

V is h-positive definite and weakly h0-decrescent;
(iv) D+V(2.1)(t, x) ≤ −Chp(t, x), C = const > 0, for (t, x) ∈ S(h, ρ).
Then system (2.1) is Lp−(h0, h)-equistable.

Proof. By Theorem 3.4, it follows that the system (2.1) is (h0, h)-
equistable. Thus, for each ε > 0 and t0 ∈ R+ there exists a δ = δ(t0, ε) > 0
such that h0(t0, x0) < δ implies h(t, x(t)) < ε for all t ≥ t0.

We shall show that there exists a δ0 = δ0(t0) > 0 such that h0(t0, x0) < δ0

implies (2.5). We define

m(t) = V (t, x(t)) + C

t∫

t0

hp(t, x(t))dt.

By condition (iv) of the theorem, we have D+m(t) = D+V(2.1)(t, x(t)) +
Chp(t, x(t)) ≤ 0.

This implies that m(t) is nonincreasing, therefore m(t) ≤ m(t0) and

∞∫

t0

hp(t, x(t))dt ≤ m(t0)/C = V (t0, x0)/C for t ≥ t0.

Thus, the proof is completed. ¤

Theorem 4.4. Assume that:
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iii) V ∈ C[R+ ×Rn, R+], V (t, 0) = 0, V (t, x) is locally Lipschitzian in x,

h-positive definite and h0-decrescent;
(iv) D+V(2.1)(t, x) ≤ −Chp(t, x), C = const > 0, for (t, x) ∈ S(h, ρ).
Then system (2.1) is uniformly Lp−(h0, h)-stable.
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Proof. Condition (iv) of the theorem, in virtue of condition (iii), reduces
to D+V(2.1)(t, x) ≤ g(t, V (t, x)), where g(t, u) = −(C/B)u, and hence it is easy
to check that the trivial solution u = 0 of equation (2.3) is uniformly L1-stable.
Therefore, from Theorem 4.2, the system (2.1) is uniformly Lp−(h0, h)-stable.

¤

Theorem 4.5. Let h0, h ∈ Γ. System (2.1) is Lp−(h0, h)-integrally stable
if and only if for each ε > 0 and t0 ∈ R+ there exist a δ1 = δ1(t0, ε) > 0 and
a δ2 = δ2(t0, ε) > 0 such that if Φ(t) is any continuous function defined on

[t0,∞] and satisfies
∞∫
t0

‖Φ(t)‖dt < δ2 then for any solution y(t) = y(t, t0, y0) of

the system

(4.1) ẏ = f(t, y) + Φ(t)

for which h0(t0, y0) < δ1 the inequality
∞∫
t0

hp(t, y(t))dt < ∞ is verified.

Proof. The necessity of the condition is clear. Therefore it suffices
to prove that if the property from the statement occurs, the system (2.1) is
Lp−(h0, h)-integrally stable.

Let F (t, x) be such that
∞∫
t0

sup
h(t,x)≤ε

‖F (t, x)‖dt < δ2, where δ2 = δ2(t0, ε) > 0

is one given the condition. Consider (t0, x0) with h0(t0, x0) < δ1 and the
solution x∗(t) = x∗(t; t0, x0) of the perturbed system (2.2).

If we would not have
∞∫
t0

hp(t, x∗(t))dt < ∞, there exists the first point

t1 > t0,
t1∫
t0

hp(t, x∗(t))dt = ∞ and
t∫
t0

hp(t, x∗(t))dt < ∞ for all t ∈ [t0, t1). For

any t ∈ [t0, t1) take Φ(t) = F (t, x∗(t)), we have
t1∫

t0

‖Φ(t)‖dt ≤
t1∫

t0

sup
h(t,x∗(t))≤ε

‖F (t, x∗(t))‖dt < δ2.

We extend Φ(t) continuously on the whole semiaxis t ≥ t0 such that
t1∫
t0

‖Φ∗(t)‖dt ≤ δ2, where Φ∗(t) is a extended function, for this it is sufficient to

take t2 ≥ t1 such that t2 − t1 <

2[δ2(t0, ε)−
t1∫
t0

‖Φ(t)‖dt]

1 + ‖Φ(t1)‖ , Φ∗(t) = Φ(t) for all
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t ∈ [t0, t1) linear on [t1, t2), where we put Φ∗(t2) = 0, and zero for all t ≥ t1.
We consider the following system

(4.2) ẏ = f(t, y) + Φ∗(t)

Now let y∗(t) = y∗(t; t0, x0) be a solution of system (4.2).

From h0(t0, x0) < δ1 and
∞∫
t0

Φ∗(t)dt < δ2, we have
∞∫
t0

hp(t, y∗(t))dt < ∞.

Hence
t1∫
t0

hp(t, y∗(t))dt < ∞. But we have y∗(t; t0, x0) ≡ x∗(t; t0, x0) on (t0, t1)

hence
t1∫
t0

hp(t, x∗(t))dt < ∞ which is contradictory. Therefore, the system (2.1)

is Lp−(h0, h)-integrally stable. ¤

Theorem 4.6. Assume that:
(i) h0, h ∈ Γ and h0 is finer than h;
(ii) g ∈ C[R2

+, R] and g(t, 0) ≡ 0;
(iii) V ∈ C[R+ × Rn, R+], V (t, 0) = 0, V is weakly h0-decrscent and

Ahp(t, x) ≤ V (t, x), A = const > 0, for (t, x) ∈ S(h, ρ);
(iv) |V (t, x) − V (t, x′)| ≤ M‖x − x′‖ for any (t, x), (t, x′) ∈ S(h,H)

(H = const > 0), where M = const > 0;
(v) D+V(2.1)(t, x) ≤ g(t, V (t, x)) for (t, x) ∈ S(h, ρ).
If the trivial solution u = 0 of equation (2.3) is L1-integrally stable, then

system (2.1) is Lp−(h0, h)-integrally stable.

Proof. By Theorem 3.2 system (2.1) is (h0, h)-equistable. Thus, for each
ε > 0 and t0 ∈ R+ there exists a δ = δ(t0, ε) > 0 such that h0(t0, x0) < δ
implies h(t, x(t)) < ε for all t ≥ t0.

Since the trivial solution u = 0 of equation (2.3) is L1-integrally stable,
it is stable and for each ε > 0 and t0 ∈ R+ there exist a η1 = η1(t0, ε) > 0

and a η2 = η2(t0, ε) > 0 such that u0 < η1 and
∞∫
t0

sup
u≤ε

|G(t, u)|dt < η2 implies

∞∫
t0

u∗(t, t0, u0)dt < ∞, where u∗(t) = u∗(t; t0, u0) is the solution of the perturbed

equation (2.4).
Since V (t, x) is weakly h0-decrescent, for given η1 > 0 and t0 ∈ R+, there

exist a δ1 = (ε, η1, t0) = δ1(ε, t0) > 0 and a function a ∈ CK such that for
(t0, x0) ∈ S(h0, δ1), V (t0, x0) ≤ a(t0, h0(t0, x0)).

Choose δ = δ(t0, ε) such that δ = (0, δ1], a(t0, δ) < η1 and let
h0(t0, x0) < δ1. We set u0 = V (t0, x0). Hence 0 < u0 < η1.
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Given η2 < 0, there exists a δ2 = δ2(t0, ε) > 0 such that δ2 < min(η2/M, δ).
By using condition (v) of the theorem

D+V(2.2)(t, x) ≤ D+V(2.1)(t, x) + M‖F (t, x)‖ ≤ g(t, V (t, x)) + M‖F (t, x)‖.
We put λ(t) = M‖F (t, x∗(t; t0, x0))‖, where x∗(t) = x∗(t; t0, x0) is the

solution of the perturbed system (2.2) such that h0(t0, x0) < δ1.
For this function λ(t), we consider the following scalar equation

(4.3) u̇ = g(t, u) + λ(t).

Because h(t, x(t)) < ε for all t ≥ t0 satisfying the condition h0(t0, x0) < δ1,
we get

∞∫

t0

λ(t)dt = M

∞∫

t0

‖F (t, x∗(t; t0, x0))‖dt ≤

≤ M

∞∫

t0

sup
h(t,x∗(t))≤ε

‖F (t, x∗(t))‖dt ≤ Mδ2 < η2.

By Theorem 4.5, we have

(4.4)

∞∫

t0

r∗(t; t0, u0)dt < ∞,

where r∗(t) = r∗(t; t0, u0) is the maximal solution of the equation (4.3) such
that u0 < η1.

Moreover, from Theorem 3.1 we obtain that V (t0, x0) ≤ u0 implies

(4.5) V (t, x∗(t)) ≤ r∗(t; t0, u0) for all t ≥ t0.

For each ε > 0 and t0 ∈ R+, using δ1 and δ2 defined above, we claim
that system (2.1) is Lp−(h0, h)-integrally stable, whenever h0(t0, x0) < δ1 and
∞∫
t0

sup
h(t,x)≤ε

‖F (t, x)‖dt < ∞.

By using condition (iii) of the theorem and relations (4.4) and (4.5), it
follows that Ahp(t, x∗(t)) ≤ V (t, x∗(t; t0, x0)) ≤ r∗(t; t0, u0), and hence

∞∫

t0

hp(t, x∗(t))dt ≤ 1/A

∞∫

t0

r∗(t; t0, u0)dt < ∞.

This proves that system (2.1) is Lp−(h0, h)-integrally stable. ¤
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ÂÚÐÕÓ Lp-ÓÑÒÎÉ×ÈÂÎÑÒÒÀ È
Lp-ÈÍÒÅÃÐÀËÍÀÒÀ ÓÑÒÎÉ×ÈÂÎÑÒ ÍÀ

ÍÅËÈÍÅÉÍÈ ÄÈÔÅÐÅÍÖÈÀËÍÈ ÓÐÀÂÍÅÍÈß
ÏÎ ÎÒÍÎØÅÍÈÅ ÍÀ ÄÂÅ ÌÅÐÊÈ

Èâàí Ê. Ðóñèíîâ

Ðåçþìå. Íàìåðåíè ñà íîâè äîñòàòú÷íè óñëîâèÿ çà Lp-óñòîé÷èâîñò
è Lp-èíòåãðàëíà óñòîé÷èâîñò íà íåëèíåéíè ñèñòåìè îò äèôåðåíöèàëíè
óðàâíåíèÿ ïî îòíîøåíèå íà äâå ìåðêè, êàòî ñå èçïîëçâàò âòîðèÿ ìåòîä
íà Ëÿïóíîâ è ïðèíöèïà íà ñðàâíåíèåòî.
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