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Abstract. A four-parametric family of 4-dimensional Riemannian
product manifolds is constructed on a Lie group. This family is charac-
terized geometrically. The form of the curvature tensor on the manifolds
is obtained.
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1. Preliminaries

Let (M, P, g) be a 2n-dimensional Riemannian almost product manifold,
i.e. P is an almost product structure and ¢ is a metric on M such that

(1.1) P’X =X, g(PX,PY)=g(X,Y)

for all differentiable vector fields X,Y € X(M).
Further, X, Y, Z, W (z,y, z, w, respectively) will stand for arbitrary differ-

entiable vector fields on M (vectors in T,M, p € M, respectively).

Let V be the Levi-Civita connection of the metric g. Then, the tensor
field F of type (0,3) on M is defined by
(1.2) F(X,Y,Z) = g((VxP)Y.Z) .

It has the following symmetries

(1.3) F(X,Y,Z)=F(X,2,Y)=—F(X,PY,PZ).
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Let {e;} (i=1,2,...,2n) be an arbitrary basis of T, M at a point p of M.
The components of the inverse matrix of ¢ are denoted by ¢*/ with respect to
the basis {e;}. The Lie form « associated with F' is defined by

(1.4) a(z) = g F(e; e, 2) .
The Nijenhuis tensor field N of the manifold is given by
(1.5) N(X,Y) = [PX, PY] + [X,Y] — P[PX,Y] — P[X, PY].

It is known [4] that the almost product structure P is product if and only
it N=0.

A classification of the Riemannian almost product manifolds is introduced
in [4], where six classes of these manifolds are characterized according to the
properties of F. The most general class Ws & W3 & W5 & Ws of Riemannian
product manifold with tr P = 0 is characterized by the condition [5]:

W W3 W5 & Ws : N(X,Y) =0«

(1.6) F(X,Y,PZ) + F(Y, Z,PX) + F(Z,X, PY) = 0.

Let R be the curvature tensor of V,i.e. R(X,Y)Z =VxVyZ—-VyVxZ—
Vix,y]Z. The corresponding tensor of type (0, 4) is denoted by the same letter
and it is given by R(X,Y, Z, W) =g (R(X,Y)Z,W).

The Ricci tensor p and the scalar curvatures 7 and 7 of R are defined by:

(17) P(Z% Z) = gin(eia Y, z, ej)) T = gz]p(e’n ej)a ;i = gwp(eupe])

Definition 1.1. A tensor L of type (0,4) is called a curvature-like tensor
if it satisfies the following conditions for any X, Y, Z, W € X(M):

L(X,Y,Z, W) = _L(Ksza W) = —L(X,KW,Z),

(1.8) L(X,Y,Z, W)+ L(Y, Z, X,W) + L(Z,X,Y,W) = 0.

Definition 1.2. [5] A curvature-like tensor L is called a Kéahler tensor if
it satisfies the following condition:

(1.9) L(X,Y,PZ,PW)=L(X,Y,Z,W), X,Y,Z,W € X(M).

Further, we consider 2n-dimensional Riemannian product manifolds with
tr P =0.
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1.1. Geometric properties of Riemannian product manifolds

It is known that the tensor P of type (1,1) satisfies the identity:
(1.10) (VxVyP)Z — (VyVxP)Z = R(X,Y)PZ — PR(X,Y)Z.

Take into acount (1.2), (1.3), R(X,Y, Z,W) =g (R(X,Y)Z, W) and (1.1)

we receive:

(1.11) (VxF)(Y,Z,PW)— (VyF) (X, Z,PW) =
= R(X,Y,PZ,PW) - R(X,Y, Z,W) ,

(1.12) (VxF)(Y,PZ,W)=—(VxF)(Y,Z,PW)-
—9((VxP)Z,(VyP)W) = g((VxP)W,(VyP)Z).

Theorem 1.1. Let (M, P,g) be a Riemannian product manifold. Then,
the curvature tensor R satisfies:

& {R(PX.PY.Z,W)+R(X,Y,PZ PW)}+

(1.13) (VxP)Y — (VyP)X,(VzP)W — (VwP)Z =0,

5
X,Y,Zg
where G is the cyclic sum by three arguments.

Proof. Since (M, P,g) belongs to the class Wy & W5 & W5 & Wy then
the characteristic condition (1.6) holds. By covariant differentiation in (1.6) we
obtain

(VxF) (Y, Z,PW)+ (VxF) (Z,W,PY)+
(1.14) +(VxF)(W,Y,PZ)+ g ((VxP)W,(VyP)Z) +
+9((VxP)Y,(VzP)W) +g(VxP)Z,(VwP)Y) = 0.

Taking into account the equalities (1.10), (1.11), (1.14) and after straightfor-
ward calculation we get (1.13). O

Definition 1.3. A curvature-like tensor L on a Riemannian product mani-
fold with tr P = 0 is said to be anti-Kahler if it has the property:

(1.15) L(X,)Y,PZ PW)=—-L(X,Y,Z W), XY ZWeX(M).
Next, Theorem 1.1 and Definition 1.3 imply:
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Corollary 1.1. Let (M, P,g) be a Riemannian product manifold with
tr P =0 and let R be an anti-Kahler tensor. Then, we have:

(1.16) Xg'?zg (VxP)YY — (VyP)X,(VzP)W — (VwP)Z)) = 0.

Further, let us denote:

(1.17) KX, Y,Z,W)=9(VxP)Y = (VyP)X,(VzP)W — (VwP)Z).
Then, because of (1.17) the tensor K has the properties:

(1.18) KX, Y,ZW)=-KY,X,Z,W)=-K(X,Y,W, Z).

By (1.18), Corollary 1.1, and Definition 1.1 we establish that K is a
curvature-like tensor on any Riemannian product manifold if the curvature
tensor R is an anti-Kéahler tensor. Moreover, by (1.5) and N = 0, it is easy to
prove that

(1.19) K(X,Y,PZ,PW) = —-K(X,Y, Z,W),

i.e. the tensor K is an anti-Ké&hler tensor, too.

2. A Lie group as a 4-dimensional
Riemannian product manifold with tr P =0

Let V be a 4-dimensional real vector space and consider the structure of the
Lie algebra defined by the brackets [E;, E;| = ijE;€7 where {F1, Eq, B3, B4} is
a basis of V' and C’fj € R. Then, the Jacobi identity for ij
(2.1) CEChe + CHCL + CECL =0

holds. Let G be the associated real connected Lie group and {X1, Xo, X3, X4}
be a global basis of left invariant vector fields induced by the basis of V. We
define an almost product structure on G by the conditions

(2.2) PX;=X3, PXo=Xy, PXs=X;, PXy=X,.
Further, let us consider the left invariant metric defined by
(2.3) 9(X;, X;)=1,i=1,2,3,4, g(X;,X;) =0 fori#j.

Definition 2.1. [1] An almost product structure P on a Lie group G is
said to be Abelian if

(2.4) [PX,PY]=—-[X,Y] forall X,Y €g.
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The conditions (1.5) and (2.4) imply N = 0, i.e. P is a product structure.
Thus, (G, P, g) is a Riemannian product manifold, i.e. (G, P,g) € Wa @ W3 &
Ws & We.

Proposition 2.1. Let (G, P, g) be a 4-dimensional Riemannian product
manifold and Abelian product structure P defined by (2.2). Then, the Lie
algebra g of G is given as follows:

(X1, Xo] = —[X3,Xy4], i.e. Cfy = —C%y,
(25) [X17X4] = [XZaXS]; ie. C{Z = 0537
(X1, X3] = CfXk, [Xo, X4 = CH Xy,

where C’fj eR (i,5,k = 1,2,3,4) must satisfy the Jacobi identity.

Further, let us construct our example by setting
Cf2:C§4:C{€4:C§3:07 k:1727374’

In this case, for the non-zero Lie brackets of g the Jacobi identity (2.1)
implies

(26) [Xg, X4] = aX2 —|— bX4, [X17X3] = CX1 —|— dX3,

where a, b, c,d € ®. Thus, the conditions (2.6) define a family of 4-dimensional
real Lie algebras g, which is characterized by four parameters. It is known [1]
that if a Lie algebra g admits an Abelian product structure then g is solvable.
Therefore, the above considered Lie algebras (2.6) are solvable.

Let us remark that the Killing form [3] of the considered Lie algebra g

(2.7) B(X,)Y)=tr(ad XadY), XY eg,
has the following form

d? 0 —cd O

0 b2 0 —ab
—cd 0 2 0

0 —ab 0 a?

B =

It is easy to prove, that det B = 0, i.e. the Killing form is degenerate.
Thus, the Killing form B can not be a Riemannian metric.
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2.1. Geometric characteristics of the constructed manifold

Let V be the Levi-Civita connection of g. Then, the following well-known
condition is valid

29(VxY,Z) = Xg(Y,Z2) +Yg(X,Z) = Zg(X,Y)

(2.8) +9([X, Y], 2) +9(12,X].Y) + g(Z,Y], X).

Having in mind (2.3), (2.6) and (2.8), we obtain the following non-zero
components of the Levi-Civita connection of the above constructed manifold
(G, P.g):

leXlz—CXg, VXSXlz—ng, VX4X2:—bX4, VX2X2:—GX4,

(29) VX1X3: CXl, VX3X3: Xm, VX4X4: bXQ, VX2X4: aXQ.

Then, by (2.2) and (2.9) for the non-zero components of VP we obtain:

(VXIP)Xl = 2CX1, (VXSP)X3 == 2dX3,

(2 10) (VX2P)X2 = 2G,X27 (VX4P)X4 = 2bX4,
’ (lep)Xg = —2CX3, (VXJP)Xl = —2dX1,
(VXZP)X4 = 720,X4, (VX4P)X2 = 72bX2

Next, taking into account (1.2), (1.4), (2.3) and (2.10), we get the non-
zero components Fyj, = F(X;, X;, X)) of F and the components o; = a(Z;)
as follows:

Fi11 = —Fi33 = 2c, Fyo9 = —Foyy = 2a,
(2.11) F311 = —F333 = 2d, Fuog = —Fyqq = 20,
ap =2¢, az=2a, az=-—-2d, a4=—2b.

2.2. Curvature properties of the constructed manifold

Let R be the curvature tensor of type (0,4) of (G, P, g). Having in mind
(2.9), we get the non-zero components R;jrs = R(X;, X;, Xi, X,) of R:

(212) R1331 = — (62 + dz) y R2442 = — (a2 + b2) .
Then, according to (2.2), (2.12) and Definition 1.3, we obtain:

Theorem 2.1. The curvature tensor R of the manifold (G, P,g) is an
anti-Kéhler tensor and it has the form:

(213) R(X,)Y,Z, W) = ig (VxP)Y = (VyP)X,(VzP)W — (Vw P)Z).
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Proof. Let X = 2'X, ,Y = 4'X; , Z = 2*X; , W = w'X; , where
2ty 2wt € R (i = 1,2,3,4), be arbitrary vectors in g. Then, by (2.12) for
R we have

R(X,Y,Z, W)= (62 + d2) (x1y3 — 1:3y1) (le3 - z3w1)

(2.14) +(a? + b?) (x2y4 _ x4y2) (ZQw4 _ z4w2) .

Then, the equalities (1.16) and (2.10) imply that the right-hand side of (2.13)
is equal to that of (2.14). O

Proposition 2.2. The curvature tensor R of the manifold (G, P, g) satis-
fies the equation

(2.15) R(X,Y,Z,W) =g ([X,Y],[Z,W]).

Proof. The validity of (2.15) follows from (2.6) and (2.14) by direct
computation as in Theorem 2.1. O

Further, according to (2.9) and (2.12) we establish that
(2.16) (Vx,R)(X;, Xk, X1, Xs) =0 for all 4,45,k l,s=1,2,3,4

and thus we obtain the following:
Proposition 2.3. The manifold (G, P, g) is locally symmetric.

Next, by vitrue of (1.7) and (2.12), we compute the non-zero components

pii = p(X;, X;) of the Ricci tensor and the value of scalar curvature 7 as
follows:
(2.17) pi1 = p3z = —(+b%),  pag = pas = —(a>+b?),

7= —2(a®+b*+c*+d?) .

Therefore, by (2.2), we establish that p is a hibrid tensor with respect to P
and the scalar curvature 7 is constant. Further, according to (2.3) and (2.17),
we prove the following:

Theorem 2.2. The manifold (G,P,g) is Einsteinian if and only if
la| = |¢|, [b] = |d| hold.
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BbPXY HAKON PUMAHOBU MHOT'OOBPA3UA
CbC CTPYKTVYPA HA IIPOU3BEJEHNE

Ho6punka Kocraguunosa ITIbp6GeBa
Pestome. Brpxy rpyna na JIu e KOHCTPyHpPaHO YeTHPHU MAPAMETPUIHO
CceMeicTBO 0T 4-MepHM PUMAHOBA MHOTrOOOpa3us CbC CTPYKTYPa HA IPOU3BE-

nenune. Hamepenn ca reOMETPpUYHUTE XapaKTEePUCTUKU Ha TOBA CEMEHCTBO OT
MuOroobpasusi. [losiyuen e BUABT HA TEH30pa HA KPUBWHA, 33, TE3U MHOT00ODA3US.
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