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Abstract. A four-parametric family of 4-dimensional Riemannian
product manifolds is constructed on a Lie group. This family is charac-
terized geometrically. The form of the curvature tensor on the manifolds
is obtained.

Key words: Riemannian almost product manifold, Riemannian metric,
product structure, Lie group, Lie algebra

Mathematics Subject Classification 2000: 53C15, 53C20, 22E15

1. Preliminaries

Let (M,P, g) be a 2n-dimensional Riemannian almost product manifold,
i.e. P is an almost product structure and g is a metric on M such that

(1.1) P 2X = X, g(PX,PY ) = g(X,Y )

for all differentiable vector fields X,Y ∈ X(M).
Further, X, Y, Z,W (x, y, z, w, respectively) will stand for arbitrary differ-

entiable vector fields on M (vectors in TpM , p ∈ M , respectively).
Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor

field F of type (0, 3) on M is defined by

(1.2) F (X,Y, Z) = g ((∇XP )Y, Z) .

It has the following symmetries

(1.3) F (X, Y, Z) = F (X, Z, Y ) = −F (X, PY, PZ).
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Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M .
The components of the inverse matrix of g are denoted by gij with respect to
the basis {ei}. The Lie form α associated with F is defined by

(1.4) α(z) = gijF (ei, ej , z) .

The Nijenhuis tensor field N of the manifold is given by

(1.5) N(X, Y ) = [PX, PY ] + [X, Y ]− P [PX, Y ]− P [X, PY ].

It is known [4] that the almost product structure P is product if and only
if N = 0.

A classification of the Riemannian almost product manifolds is introduced
in [4], where six classes of these manifolds are characterized according to the
properties of F . The most general class W2 ⊕W3 ⊕W5 ⊕W6 of Riemannian
product manifold with tr P = 0 is characterized by the condition [5]:

(1.6)
W2 ⊕W3 ⊕W5 ⊕W6 : N(X, Y ) = 0 ⇔

F (X,Y, PZ) + F (Y, Z, PX) + F (Z,X, PY ) = 0.

Let R be the curvature tensor of∇, i.e. R(X, Y )Z = ∇X∇Y Z−∇Y∇XZ−
∇[X,Y ]Z. The corresponding tensor of type (0, 4) is denoted by the same letter
and it is given by R(X, Y, Z,W ) = g (R(X, Y )Z, W ) .

The Ricci tensor ρ and the scalar curvatures τ and
∗
τ of R are defined by:

(1.7) ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),
∗
τ = gijρ(ei, P ej).

Definition 1.1. A tensor L of type (0, 4) is called a curvature-like tensor
if it satisfies the following conditions for any X,Y, Z, W ∈ X(M):

(1.8) L(X, Y, Z, W ) = −L(Y, X,Z, W ) = −L(X, Y, W,Z);
L(X, Y, Z, W ) + L(Y,Z, X, W ) + L(Z, X, Y, W ) = 0.

Definition 1.2. [5] A curvature-like tensor L is called a Kähler tensor if
it satisfies the following condition:

(1.9) L(X, Y, PZ, PW ) = L(X, Y, Z, W ), X, Y, Z, W ∈ X(M).

Further, we consider 2n-dimensional Riemannian product manifolds with
tr P = 0.
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1.1. Geometric properties of Riemannian product manifolds

It is known that the tensor P of type (1, 1) satisfies the identity:

(1.10) (∇X∇Y P )Z − (∇Y∇XP ) Z = R(X, Y )PZ − PR(X, Y )Z.

Take into acount (1.2), (1.3), R(X, Y, Z,W ) = g (R(X, Y )Z, W ) and (1.1)
we receive:

(1.11) (∇XF ) (Y, Z, PW )− (∇Y F ) (X, Z, PW ) =
= R(X,Y, PZ, PW )−R(X,Y, Z, W ) ,

(1.12) (∇XF ) (Y, PZ, W ) = − (∇XF ) (Y,Z, PW )−
− g ((∇XP )Z, (∇Y P )W )− g ((∇XP )W, (∇Y P )Z) .

Theorem 1.1. Let (M,P, g) be a Riemannian product manifold. Then,
the curvature tensor R satisfies:

(1.13)
S

X,Y,Z
{R(PX,PY,Z, W ) + R(X, Y, PZ, PW )}+

S
X,Y,Z

g(∇XP )Y − (∇Y P )X, (∇ZP )W − (∇W P )Z = 0 ,

where S is the cyclic sum by three arguments.

Proof. Since (M, P, g) belongs to the class W2 ⊕ W3 ⊕ W5 ⊕ W6 then
the characteristic condition (1.6) holds. By covariant differentiation in (1.6) we
obtain

(1.14)
(∇XF ) (Y, Z, PW ) + (∇XF ) (Z, W,PY )+

+ (∇XF ) (W,Y, PZ) + g ((∇XP )W, (∇Y P )Z)+
+g ((∇XP )Y, (∇ZP )W ) + g ((∇XP )Z, (∇W P )Y ) = 0.

Taking into account the equalities (1.10), (1.11), (1.14) and after straightfor-
ward calculation we get (1.13). ¤

Definition 1.3. A curvature-like tensor L on a Riemannian product mani-
fold with tr P = 0 is said to be anti-Kähler if it has the property:

(1.15) L(X, Y, PZ, PW ) = −L(X, Y, Z, W ), X, Y, Z, W ∈ X(M).

Next, Theorem 1.1 and Definition 1.3 imply:
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Corollary 1.1. Let (M, P, g) be a Riemannian product manifold with
tr P = 0 and let R be an anti-Kähler tensor. Then, we have:

(1.16) S
X,Y,Z

g ((∇XP )Y − (∇Y P )X, (∇ZP )W − (∇W P )Z)) = 0.

Further, let us denote:

(1.17) K(X, Y, Z, W ) = g ((∇XP )Y − (∇Y P )X, (∇ZP )W − (∇W P )Z) .

Then, because of (1.17) the tensor K has the properties:

(1.18) K(X, Y, Z, W ) = −K(Y,X, Z, W ) = −K(X, Y, W,Z).

By (1.18), Corollary 1.1, and Definition 1.1 we establish that K is a
curvature-like tensor on any Riemannian product manifold if the curvature
tensor R is an anti-Kähler tensor. Moreover, by (1.5) and N = 0, it is easy to
prove that

(1.19) K(X,Y, PZ, PW ) = −K(X, Y, Z,W ),

i.e. the tensor K is an anti-Kähler tensor, too.

2. A Lie group as a 4-dimensional
Riemannian product manifold with trP = 0

Let V be a 4-dimensional real vector space and consider the structure of the
Lie algebra defined by the brackets [Ei, Ej ] = Ck

ijEk, where {E1, E2, E3, E4} is
a basis of V and Ck

ij ∈ <. Then, the Jacobi identity for Ck
ij

(2.1) Ck
ijC

l
ks + Ck

jsC
l
ki + Ck

siC
l
kj = 0

holds. Let G be the associated real connected Lie group and {X1, X2, X3, X4}
be a global basis of left invariant vector fields induced by the basis of V . We
define an almost product structure on G by the conditions

(2.2) PX1 = X3, PX2 = X4, PX3 = X1, PX4 = X2.

Further, let us consider the left invariant metric defined by

(2.3) g(Xi, Xi) = 1, i = 1, 2, 3, 4, g(Xi, Xj) = 0 for i 6= j.

Definition 2.1. [1] An almost product structure P on a Lie group G is
said to be Abelian if

(2.4) [PX, PY ] = −[X,Y ] for all X, Y ∈ g.

134



On Some Riemannian Product Manifolds

The conditions (1.5) and (2.4) imply N = 0, i.e. P is a product structure.
Thus, (G,P, g) is a Riemannian product manifold, i.e. (G,P, g) ∈ W2 ⊕W3 ⊕
W5 ⊕W6.

Proposition 2.1. Let (G,P, g) be a 4-dimensional Riemannian product
manifold and Abelian product structure P defined by (2.2). Then, the Lie
algebra g of G is given as follows:

(2.5)
[X1, X2] = −[X3, X4], i.e. Ck

12 = −Ck
34,

[X1, X4] = [X2, X3], i.e. Ck
14 = Ck

23,
[X1, X3] = Ck

13Xk, [X2, X4] = Ck
24Xk,

where Ck
ij ∈ < (i, j, k = 1, 2, 3, 4) must satisfy the Jacobi identity.

Further, let us construct our example by setting

Ck
12 = Ck

34 = Ck
14 = Ck

23 = 0, k = 1, 2, 3, 4.

In this case, for the non-zero Lie brackets of g the Jacobi identity (2.1)
implies

(2.6) [X2, X4] = aX2 + bX4, [X1, X3] = cX1 + dX3,

where a, b, c, d ∈ <. Thus, the conditions (2.6) define a family of 4-dimensional
real Lie algebras g, which is characterized by four parameters. It is known [1]
that if a Lie algebra g admits an Abelian product structure then g is solvable.
Therefore, the above considered Lie algebras (2.6) are solvable.

Let us remark that the Killing form [3] of the considered Lie algebra g

(2.7) B(X, Y ) = tr(ad X adY ), X, Y ∈ g,

has the following form

B =




d2 0 −cd 0
0 b2 0 −ab
−cd 0 c2 0
0 −ab 0 a2


 .

It is easy to prove, that det B = 0, i.e. the Killing form is degenerate.
Thus, the Killing form B can not be a Riemannian metric.
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2.1. Geometric characteristics of the constructed manifold

Let ∇ be the Levi-Civita connection of g. Then, the following well-known
condition is valid

(2.8)
2g(∇XY, Z) = Xg(Y, Z) + Y g(X, Z)− Zg(X, Y )

+g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X).

Having in mind (2.3), (2.6) and (2.8), we obtain the following non-zero
components of the Levi-Civita connection of the above constructed manifold
(G, P, g):

(2.9)
∇X1X1=−cX3, ∇X3X1=−dX3, ∇X4X2=−bX4, ∇X2X2=−aX4,
∇X1X3= cX1, ∇X3X3= dX1, ∇X4X4= bX2, ∇X2X4= aX2.

Then, by (2.2) and (2.9) for the non-zero components of ∇P we obtain:

(2.10)

(∇X1P )X1 = 2cX1, (∇X3P )X3 = 2dX3,
(∇X2P )X2 = 2aX2, (∇X4P )X4 = 2bX4,
(∇X1P )X3 = −2cX3, (∇X3P )X1 = −2dX1,
(∇X2P )X4 = −2aX4, (∇X4P )X2 = −2bX2.

Next, taking into account (1.2), (1.4), (2.3) and (2.10), we get the non-
zero components Fijk = F (Xi, Xj , Xk) of F and the components αi = α(Zi)
as follows:

(2.11)
F111 = −F133 = 2c, F222 = −F244 = 2a,
F311 = −F333 = 2d, F422 = −F444 = 2b,
α1 = 2c, α2 = 2a, α3 = −2d, α4 = −2b .

2.2. Curvature properties of the constructed manifold

Let R be the curvature tensor of type (0, 4) of (G,P, g). Having in mind
(2.9), we get the non-zero components Rijks = R(Xi, Xj , Xk, Xs) of R:

(2.12) R1331 = − (
c2 + d2

)
, R2442 = − (

a2 + b2
)
.

Then, according to (2.2), (2.12) and Definition 1.3, we obtain:

Theorem 2.1. The curvature tensor R of the manifold (G,P, g) is an
anti-Kähler tensor and it has the form:

(2.13) R(X, Y, Z, W ) =
1
4
g ((∇XP )Y − (∇Y P )X, (∇ZP )W − (∇W P )Z) .
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Proof. Let X = xiXi , Y = yiXi , Z = ziXi , W = wiXi , where
xi, yi, zi, wi ∈ R (i = 1, 2, 3, 4), be arbitrary vectors in g. Then, by (2.12) for
R we have

(2.14)
R(X,Y, Z,W ) =

(
c2 + d2

) (
x1y3 − x3y1

) (
z1w3 − z3w1

)
+(a2 + b2)

(
x2y4 − x4y2

) (
z2w4 − z4w2

)
.

Then, the equalities (1.16) and (2.10) imply that the right-hand side of (2.13)
is equal to that of (2.14). ¤

Proposition 2.2. The curvature tensor R of the manifold (G,P, g) satis-
fies the equation

(2.15) R(X, Y, Z, W ) = g ([X, Y ], [Z,W ]) .

Proof. The validity of (2.15) follows from (2.6) and (2.14) by direct
computation as in Theorem 2.1. ¤

Further, according to (2.9) and (2.12) we establish that

(2.16) (∇XiR)(Xj , Xk, Xl, Xs) = 0 for all i, j, k, l, s = 1, 2, 3, 4

and thus we obtain the following:

Proposition 2.3. The manifold (G,P, g) is locally symmetric.

Next, by vitrue of (1.7) and (2.12), we compute the non-zero components
ρij = ρ(Xi, Xj) of the Ricci tensor and the value of scalar curvature τ as
follows:

(2.17)
ρ11 = ρ33 = −(c2+b2), ρ22 = ρ44 = −(a2+b2),
τ = −2(a2+b2+c2+d2) .

Therefore, by (2.2), we establish that ρ is a hibrid tensor with respect to P
and the scalar curvature τ is constant. Further, according to (2.3) and (2.17),
we prove the following:

Theorem 2.2. The manifold (G, P, g) is Einsteinian if and only if
|a| = |c| , |b| = |d| hold.
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ÂÚÐÕÓ ÍßÊÎÈ ÐÈÌÀÍÎÂÈ ÌÍÎÃÎÎÁÐÀÇÈß
ÑÚÑ ÑÒÐÓÊÒÓÐÀ ÍÀ ÏÐÎÈÇÂÅÄÅÍÈÅ

Äîáðèíêà Êîñòàäèíîâà Ùúðáåâà

Ðåçþìå. Âúðõó ãðóïà íà Ëè å êîíñòðóèðàíî ÷åòèðè ïàðàìåòðè÷íî
ñåìåéñòâî îò 4-ìåðíè ðèìàíîâè ìíîãîîáðàçèÿ ñúñ ñòðóêòóðà íà ïðîèçâå-
äåíèå. Íàìåðåíè ñà ãåîìåòðè÷íèòå õàðàêòåðèñòèêè íà òîâà ñåìåéñòâî îò
ìíîãîîáðàçèÿ. Ïîëó÷åí å âèäúò íà òåíçîðà íà êðèâèíà çà òåçè ìíîãîîáðàçèÿ.
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