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Abstract. In this paper, we offer a proposition enabling make an
assessment of meromorphic continuation of power series by means of a
specially defined polynomial qn,m(α) using the coefficients of the Taylor
series.
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Questions about meromorhic continuation of power series have interested
the mathematicians for a rather long time. Already in 1892 Hadamar obtained
some important results in this direction (see [4]) last 30 years these problems
were again in consideration by the mathematicians due to some results obtained
through Padé approximants (see [2, 3, 5]). Here we suggest a statement which
gives the opportunity to estimate the meromorhic continuation of power series.

Let

(1)
+∞∑
n=0

fnzn

be an arbitrary power series and R0 = R0(f) be the radius of convergence.
If R0 > 0 by f = f(z) we will denote the sum of the series (1) in the disk
of convergence D0 = {z : |z| < R0} and the analytic function defined by the
element (f, D0) as well. In that case for each m ∈ N we denote Dm = Dm(f)
to be the disk of m-meromorphy of f (the maximum open disk with a center O
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in which f(z), z ∈ D0 could be continued as a meromorphic function, having
no more that m poles, taking into account their multiplicities), and let Rm =
Rm(f) be the radius of Dm . As usual C will be the complex plain.

Let ∆n,m(f) be the determinant

(2) 4n,m(f) =

∣∣∣∣∣∣∣∣

fn−m+1 fn−m+2 . . . fn

fn−m+1 fn−m+2 . . . fn

. . . . . . . . . . . .
fn−m+1 fn−m+2 . . . fn

∣∣∣∣∣∣∣∣
, 4n,0(f) = 1,

(f−k = 0, k ∈ N).
On the assumption that ∆n,m(f) 6= 0 (n ≥ n0,m ∈ N) we put

(3) qn,m(α) = qn,m(α, f) = (−1)m ∆n,m((z − α)f)
∆n,m(f)

Let us mark that qn,m(α) is polynomial of m degree with a coefficient
in front of the highest degree 1, whose zeros we we shall denote with αn,j ,
j = 1, 2, 3, ...,m, i.e.

(4) qn,m(α) =
m∏

j=1

(α− αn,j)

and with Pn = {αn,1, αn,2, ..., αn,m} we shall denote the set of zeros of this
polynomial.

If ∆n,m(f) = 0 for n ≥ n0 , for any power series (1) and any sequence
of positive numbers ε = {ε}+∞n=0 exist a power series

g = g(z) =
+∞∑
n=0

gnzn, g ∈ ∪ε(f),

such that for any nonnegative integer m and n , where

∪ε(f) = { g : |gn − fn| < εn, εn : lim
n→+∞

|εn| 1n = q, n = 0, 1, 2... } ( 0 ≤ q < 1 )

(see [6]). In such case f is replased and g is under consideration. So in further
consideration if Rm < ∞ we consider that the following inequality is valid

(5) |∆n,m(f)| ≥ qn
0 (q ≥ q0 > 0), n ≥ n0, m = 0, 1, 2, ...
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It is well known that the radius of m-meromorphy of the power series (1)
Rm = Rm(f) is given by Hadamard s formula

Rm(f) =
`m(f)

`m+1(f)

where `0(f) = 1, `m(f) = lim
n→+∞

| ∆n,m(f) | 1n (see [4]).

We will prove the following proposition:

Theorem. If the following is satisfied

(6) lim
n→+∞

qn,m(αi) = 0, αi ∈ C\{0}

then

(7) 0 < R0 ≤ |αi| ≤ Rm.

Before roving this proposition let us note that if qn,m(α) is defined by
the sequence of the coefficients of the series (1) by means of the equation (3).
Then there is a polynomial pn,m(α) = pn,m(α, f) such that the equality is
valid

(qn,m.f − pn,m)(α) = An,mαn+m+1 + ...

If the sequence {πn,m}, m ∈ N, n = 1, 2, 3, ...,

πn,m(α) = πn,m(α, f) =
pn,m(α, f)
qn,m(α, f)

is convergent in the point α0 6= 0 , then R0 > 0 .

Remark 1. The function πn,m(α) = pn,m(α)
qn,m(α) is called Padé approximation

of the type (n,m) for the series (1) (see [1]).

Remark 2. The above statement is due to A. Gonchar and was proved in
1981 (see [3]).

Proof of the Theorem. We shall divede the proof of the Theorem in
three cases.

Case 1. We shall prove that if (6) is valid than R0 > 0 .
Let us presume that R0 = 0 .Then

`m(f) = lim
n→+∞

|∆n,m(f)| 1n = +∞ or lim
n→+∞

|∆n,m−1(f)| 1n = 0 .
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But lim
n→+∞

|∆n,m−1(f)| 1n = 0 e impossible to be valid, because (5) is valid

and hence `m(f) = +∞.
Then |αi| > 0 and exists ρ (0 < ρ < +∞) such that 0 < ρ < |αi| and

hence

lim
n→+∞

|ρnm∆n,m(f)| 1n = lim
n→+∞

|ρnm∆n,m((z − α)f)| 1n > 1,

here α is a unspecified point of C. From where it follows that Λ = Λ(ρ) ⊂ N
exists, such that if n ∈ Λ the following inequality is valid

(8) ρnm|∆n,m((z − α)f)| ≥ ρkm|∆k,m((z − α)f)|, k = 1, 2, ..., n.

We denote ϕ the series

ϕ = ϕ(z) =
+∞∑
n=0

ϕnzn =
+∞∑
n=0

fnαn
i zn

and we form the difference

4n,m(ϕ)−40,m(ϕ) =
n∑

k=1

(4n,m(ϕ)−40,m(ϕ))

=αnm
i 4n,m((z − α)f).Tn,m ,

where

Tn,m =
n∑

k=1





ρkm4k,m((z−α)f).ρnm

ρnm4n,m((z−α)f).αnm
i

ρkm4k,m((z−α)f)
4k,m(ϕ)

−
ρkm4k,m((z−α)f).ρnm

ρnm4n,m((z−α)f).αnm
i

ρkm4k,m((z−α)f)
4k,m(ϕ)



 .

From where for n ∈ Λ, α ∈ C\P, P =
+∞⋃
n=1

Pn considering the inequality

(8) ve have

|4n,m(ϕ)−40,m(ϕ)| ≤ |αi|nm

|αi|m |4n,m((z − α)f)| .T ∗n,m ,(9)

where

T ∗n,m =
n∑

k=1




(
ρ
|αi|

)(n−k)m

∣∣∣qk,m

(
α
αi

, ϕ
)∣∣∣

+

(
ρ
|αi|

)(n−k+1)m

∣∣∣qk−1,m

(
α
αi

, ϕ
)∣∣∣


 .
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We fix n ∈ Λ and unspecified ε > 0 . For any k=1,2,...,n-1 we denote with
Jk,ε the set consisting of ε/mk2 -surroundings of the zeros of the polynomial

qk,m(α, f). We put Jn
ε =

n−1⋃
k=1

Jk,ε . The sum of the diameters of the disks

included in the set Jn
ε does not exceed the quantity ε

n−1∑
k=1

1
k2 . Then a cir-

cumference γn with a centre in the point αi and the radius rn exists which is
not cut with the set Jn

ε . Then for any α ∈ γn and k = 1, 2, ..., n we have

|qk,m(α, f)| ≥ c1

( ε

mk2

)m

= c2k
−2m ,(10)

wher the quantities c1 > 0 and c2 > 0 don t depend on k (and on n ).
Then from (9) using (10) we have

|4n,m(ϕ)−40,m(ϕ)| ≤

≤ c3.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ .

m∑

k=1

k2m

(
ρ

|αi|
)(n−k)m

≤

≤ c3.|4n,m

(
(z − α

αi
)ϕ

)
|.

m∑

k=1

k2m

(
ρ

|αi|
)km

≤

≤ c3.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ .

+∞∑

k=1

k2m

(
ρ

|αi|
)km

≤

≤ c4.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ , α ∈ γn , n ∈ Λ .

Hence |4n,m (ϕ) | ≤ c5.
∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣ , α ∈ γn , n ∈ Λ .

From the last inequality applying the maximum principle and using con-
sidering that

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ ⇒ +∞ , n → +∞ , α ∈
⋃

(αi, rn)

we have ∣∣∣∣∣∣
4n,m(ϕ)

4n,m

(
(z − α

αi
)ϕ

)
∣∣∣∣∣∣
≤ c6 , α ∈

⋃
(αi, rn) , n ∈ Λ .
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i.e. ∣∣∣∣qn,m

(
α

αi
, ϕ

)∣∣∣∣
−1

≤ c6 , α ∈
⋃

(αi, rn) , n ∈ Λ .

But this is contrary to the condition (6), since the condition (6) satisfies
then and only then, when

lim
n→+∞

qn,m

(
α

αi
, ϕ

)
= 0

when α = αi .
The obtained contradiction prove that R0 > 0.

Case 2. We shall prove that if the condition (6) is valid then |αi| ≥ R0 .

From 1 it follows that R0 > 0 and hence R0 ≤ `
−1
m

m (f) ≤ Rm .

Let us presume that |αi| < R0 . Then ρ1 ( 0 < ρ1 < +∞ ) exists such
that we have

(11) |αi| < ρ1 < R0 ≤ `
−1
m

m (f)

and hence for every α ∈ C, α is different from the poles of f in Dm we obtain

lim
n→+∞

|ρnm
1 ∆n,m(f)| 1n = lim

n→+∞
|ρnm

1 ∆n,m((z − α)f)| 1n < 1,

Then
lim

n→+∞
ρnm
1 |∆n,m((z − α)f)| = 0

and Λ1 = Λ1(ρ) ⊂ N exists such that when n ∈ Λ1 the following inequality is
valid

(12) ρnm
1 |∆n,m((z − α)f)| ≥ ρ

(n+j)m
1 |∆n+j,m((z − α)f)|, j = 0, 1, 2, ..., .

In that case using (11) vhen n ∈ Λ1 the following

(13)
∣∣∣∣
4n+j,m(f)
4n,m(f)

∣∣∣∣ ≤
1

ρjm
1

<
1

|αi|jm
, j = 1, 2, ...

is valid also.
We denote ϕ the series

ϕ = ϕ(z) =
+∞∑
n=0

ϕnzn =
+∞∑
n=0

fnαn
i zn
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and we form the difference

4n+k,m(ϕ)−4n,m(ϕ) =
k∑

j=1

(4n+j,m(ϕ)−4n+j−1,m(ϕ))

=αnm
i 4n,m((z − α)f).Tk,m ,

where

Tk,m =
k∑

j=1





ρ
(n+j)m
1 4n+j,m((z−α)f).ρnm

1
ρnm
1 4n,m((z−α)f).αnm

i

ρ
(n+j)m
1 4n+j,m((z−α)f)

4n+j,m(ϕ)

−
ρ
(n+j−1)m
1 4n+j−1,m((z−α)f).ρnm

1
ρnm
1 4n,m((z−α)f).αnm

i

ρ
(n+j−1)m
1 4n+j−1,m((z−α)f)

4n+j−1,m(ϕ)



 .

From where for n ∈ Λ, α ∈ C\P, P =
+∞⋃
n=1

Pn using the inequality (12)

ve obtain

|4n+k,m(ϕ)−4n,m(ϕ)| ≤ |αi|nm

|αi|m |4n,m((z − α)f)| .T ∗k,m ,(14)

where

T ∗k,m =
k∑

j=1




(
|αi|
ρ1

)jm

∣∣∣qn+j,m

(
α
αi

, ϕ
)∣∣∣

+

(
|αi|
ρ1

)(j−1)m

∣∣∣qn+j−1,m

(
α
αi

, ϕ
)∣∣∣


 .

We fix n ∈ Λ1 and unspecified ε > 0 . For any j=1,2,...,k we denote with
Jj,ε the set consisting of ε/mj2 -surroundings of the zeros of the polynomial

qn+j,m(α, f). We put Jk
ε =

k⋃
j=1

Jj,ε . The sum of the diameters of the disks

included in the set Jk
ε does not exceed the quantity ε

k∑
j=1

1
j2 . Then a circum-

ference γk with a centre in the point αi and the radius rk exists which is not
cut with the set Jk

ε and for any α ∈ γk and j = 1, 2, ..., k we have

|qn+j,m(α, f)| ≥ c1

(
ε

mj2

)m

= c2j
−2m ,(15)

wher the quantities c1 > 0 and c2 > 0 don t depend on j (and on n ).
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Then from (14) using (15) we have

|4n+k,m(ϕ)−4n,m(ϕ)| ≤

≤ c2.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ .

k∑

j=1

j2m

( |αi|
ρ1

)(j−1)m [( |αi|
ρ1

)m

+ 1
]
≤

≤ c3.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ .

k∑

j=1

j2m

( |αi|
ρ1

)(j−1)m

≤

≤ c3.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ .

+∞∑

j=1

j2m

[( |αi|
ρ1

)m](j−1)

≤

≤ c4.

∣∣∣∣4n,m

(
(z − α

αi
)ϕ

)∣∣∣∣ , α ∈ γk , n ∈ Λ1 .

From the last inequality we obtain that

∣∣∣∣
4n+k,m(ϕ)
4n,m(ϕ)

− 1
∣∣∣∣ ≤ c4.

∣∣∣∣∣∣
4n,m

(
(z − α

αi
)ϕ

)

4n,m(ϕ)
− 1

∣∣∣∣∣∣
, α ∈ γk , n ∈ Λ1 .

From where using the maximum principle it follows that
∣∣∣∣
4n+k,m(ϕ)
4n,m(ϕ)

− 1
∣∣∣∣ ≤ c4.

∣∣∣∣qn,m

(
α

αi
, ϕ

)∣∣∣∣ , α ∈
⋃

(αi, rn) , n ∈ Λ1 .

Then from the condition (6) we obtain that for α = αi

lim
n→+∞

qn,m

(
α

αi
, ϕ

)
= 0

and therefore hence

lim
n→+∞

4n+k,m(ϕ)
4n,m(ϕ)

= 1 , n ∈ Λ1 , k = 0, 1, 2, ... .

From where it follows that

lim
n→+∞

α
(n+k)m
i 4n+k,m(f)

αnm
i 4n,m(f)

= 1 , n ∈ Λ1 , k = 0, 1, 2, ... .
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and this contradicts the inequality (13). The obtained contradiction prove that
if the condition (6) is valid then |αi| ≥ R0 .

Case 3. We shall prove that if (6) is valid then |αi| ≤ Rm .
Let us presume that |αi| > Rm . Then ρ2 ( 0 < ρ2 < +∞ ) exists such

that
|αi| > ρ2 > Rm ≥ `

−1
m

m (f)

and hence for every α ∈ C, α is different from the poles of f in Dm we have

lim
n→+∞

|ρnm
2 ∆n,m(f)| 1n = lim

n→+∞
|ρnm

2 ∆n,m((z − α)f)| 1n > 1 .

Then Λ2 = Λ2(ρ2) ⊂ N exists such that for n ∈ Λ2 the following inequality
is valid

ρnm
2 |∆n,m((z − α)f)| ≥ ρkm

2 |∆k,m((z − α)f)| , k = 1, 2, ..., n .

We denote ϕ the series

ϕ =
+∞∑
n=0

ϕnzn =
+∞∑
n=0

fnαn
i zn

and we form the difference

4n,m(ϕ)−40,m(ϕ) =
n∑

k=1

(4k,m(ϕ)−4k−1,m(ϕ)) .

We reform this difference the same way as in 1 and through analogous
to accomplished there arguments we reach to contradiction. The obtained
contradiction prove that if the condition (6) is valid then |αi| ≤ Rm . The
prove of the theorem is complete.

Analogous questions when the convergence in (6) is geometric are consid-
ered in [3] and when the convergence is unspecified in [2] and [5]. Suggested
here method for solving the problem is different from that in previous works
and it gives more information.
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ÌÅÐÎÌÎÐÔÍÀ ÏÐÎÄÚËÆÈÌÎÑÒ
ÍÀ ÑÒÅÏÅÍÍÈ ÐÅÄÎÂÅ

Ïåòúð ßíêîâ

Ðåçþìå. Â ðàáîòàòà, ïîñðåäñòâîì ñïåöèàëíî äåôèíèðàí ÷ðåç êîåôè-
öèåíòèòå íà Òåéëîðîâ ðåä ïîëèíîì qn,m(α), ñå äîêàçâà òâúðäåíèå, äàâàùî
âúçìîæíîñò äà ñå ïðàâè ïðåöåíêà çà ìåðîìîðôíà ïðîäúëæèìîñò íà ñòåïåí-
íè ðåäîâå.
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