
Научна конференция „Иновационни софтуерни инструменти и технологии с

приложения в научни изследвания по математика, информатика и

педагогика на обучението“, 23-24 ноември 2017 г., Пампорово

97

Scientific Conference „Innovative Software Tools and Technologies with Applications in

Research in Mathematics, Informatics and Pedagogy of Education”,

23-24 November 2017, Pamporovo, Bulgaria

JAVASCRIPT LIBRARY FOR

GEOGRAPHIC MAPS VISUALIZATION

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

Abstract. The paper presents a JavaScript library for visualization of

geographic maps in web-based applications, which are syntactically and

functionally compatible with OpenLayers 2. The library avoids the difficulties

caused by rapid evolution of popular mapping tools like Google Maps API and

Bing Maps API. It supports OpenLayers maps as well as Google maps. The paper

provides a description of library's object-orientated model and functionality. The

usage of the library in end-client applications is described in the paper as well. The

library is integrated into an existing application for management of autopark.

Keywords: Map layers, Point of interest, Abstraction

1. Introduction

The popularity of map tracking and displaying data on a map have grown

rapidly in recent years. There are published API (Application programming

interface) libraries that facilitate integration of map functionality in web-based

applications. OpenLayers and Google Maps API are among the most popular ones.

Google Maps API is a Javascript API under Google license [1]. The API

provides a library for the integration of Google Maps into web sites, web or mobile

applications. Google Maps are available through Google Maps API only. The API

provides a wide range of services and utilities for data visualization on a map.

OpenLayers is a Javascript API that provides free use of dynamic maps in any

web page [2]. The API does not have its own map provider, therefore it works with

external ones. Through wrappers the OpenLayers API can use almost any data

source to display a map data. Google maps, OpenStreetMap, Bing and others are

among the external map providers, that the API implements wrappers for. The

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

98

OpenLayers class library presents a rich variety of map components and features. It

is a flexible, extensible library with strong open-source community. It has a lot of

available plug-ins developed by the community: like vector editing features, multi-

projections support, Web map service (WMS), Web feature service (WFS) and other

Geographic information system (GIS) friendly APIs [3]. Still one of the most

important OpenLayers functionality is the Google maps integration. According to [4]

statistics Google maps takes over 50% of mapping usage on the internet.

OpenLayers 2 is the latest OpenLayers version that supports the usage of

Google maps layers via integrated functionality. OpenLayers 2 was released for the

first time on August 25, 2006. It was OpenLayers' official stable release until

OpenLayers 3 first release. Meanwhile, the ability to use almost any data source on a

map (including Google maps) gathered popularity to OpenLayers among the

websites that use mapping tools. Unfortunately, according to the information

published at OpenLayers 2 documentation [2]: “Although Openlayer 2 continues to

work and is still in use, development work is concentrating on version 3“. At the

same time Google Maps API is under rapid development. With the release of version

3.23 of Google maps API a lot of OpenLayers 2 clients faced a problem: Google

map disappeared. Therefore, OpenLayers 2 clients that are depending on Google

maps were unable to use their common functionality. The problem was caused by

new implementations in Google Maps API that OpenLayers library did not support

at this moment. A lot hot fixes had been published, but most of them caused another

unusual behaviour on the map [5, 6].

This paper describes a solution to the mentioned problem. We developed a

Javascript API for dynamic maps that is syntactically and functionally compatible

with OpenLayers 2 interface. It is designed for integration in already working

business applications. The main goal is to keep the usage of Google maps and the

rich functionality of OpenLayers. The developed API allows the developer to keep

their already existing code. At the same time it provides fully functional usage of

Google Maps and OpenLayers 2 maps, working independently from each other. The

API's implementation supports same features and components on Google and

OpenLayers maps. The library integration is almost effortless.

The described library implements a bridge between OpenLayers API and

Google Maps API. It uses native OpenLayers functionality and native Google Maps

API functionality to manage map instances independently. The aim is to separate the

two APIs. That way both of them can be used to display independent base maps.

This allows developers to use the latest Google Maps API versions. Our library

serves as a map abstraction layer that stands above OpenLayers and Google maps,

and unifies the communication between the application functionality and actual map

JavaScript library for geographic maps visualization

99

library. Our library manages map instantiations, event handling and release of

unused objects. It supports dynamic switching between OpenLayers and Google

maps.

OpenLayers provides a wide variety of features on a map. Custom components

can be drawn on a map using OpenLayers markers and vector features. Analogously

Google maps exposes a rich class library, but the provided components are limited

and do not correspond to OpenLayers. Our library aims to display Google maps and

OpenLayers without any loss of components. Therefore, the library implements new

set of features and components for Google maps. Google Maps API native

components encapsulate access to data fields. In addition, once created the features

on the map are hard to select and change. The users familiar to OpenLayers expect to

receive the same functionality and tools on any map. Consequently, a new class

hierarchy is developed on top of Google Maps' base classes for compatibility with

OpenLayers features. During the development the OpenLayers’ class hierarchy

model had been followed in order to achieve smoother integration. That way the

developers receive the same behaviour on a map and continue to work with familiar

class hierarchy. Meanwhile, OpenLayers and Google maps are displayed via native

library code, thereby they are very easy to support and handle.

2. Functional features

Our library consists of two main components: Google map API extender and

abstract map manager.

2.1. Google map API extender

Google Maps API exposes an easy to extend class hierarchy [1]. Google map

API extender is a Javascript library developed on the top of Google Maps API base

classes via Javascript prototyping mechanism [7]. The Google map API extender

layer follows OpenLayers API’s class hierarchy model. Thereby, the already

implemented functionality in business applications has been kept with minimal

possibility of errors. In this way, the library can be integrated into already working

solutions effortlessly.

 Map class

 Layer class

 Features

2.1.1. Map class

The google.maps.Map class is extended within Javascript prototype chaining

mechanism, that way the used Google map object supports native OpenLayers maps

functionality.

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

100

Figure 1. Maps class diagram

An abstract BaseMap class is designed. It inherits from

google.maps.Map.prototype. The BaseMap class receives from its base class a zoom

functionality, an ability to set a center and manipulate a map. We included additional

methods within the abstract class' scope. These methods follow Openlayers.Map's

most popular functionality related to layers management. The new methods for

handling layers are: "setBaseLayer", "getLayersByName", "addLayer", "getLayer",

"updateSize". These methods allow developers to manage different type of data on a

Google map: Street view, Hybrid view, Satellite view, Traffic layer and custom

features. The abstract class is used as a prototype of GoogleMap class, which adds

instance's specific fields. The GoogleMap class itself is used to instantiate Google

map in a specified container.

2.1.2. Layer class

The OpenLayers API has two very important concepts: map and layer. The map

is an object that stores information about projections, zoom level, units and other

map settings. In the same time the data on a map is displayed via layer objects. The

layer has information how to request and display data from any data source. As

mentioned earlier, OpenLayers provides wrappers for Google Maps, Bing,

OpenStreetMap and others. These wrappers are available through layer objects. In

OpenLayers practice it is common to separate the data from different data sources in

different layers. The described map manager is designed to work with already

existing web business solutions, which makes the layers usage necessity. Working

with layers has its advantages. It makes it safer to maintain set of features from a

map without affecting the rest of the features. The layers support event handling and

visibility control. The Google Maps API does not provide a layers management. It is

up to developers to maintain layers over Google map. The exposed Google Maps

class library allows handling of different types of data over the map within

google.maps.Data class. Our maps module handles each google.maps.Data instance

JavaScript library for geographic maps visualization

101

as a layer with a different type of components. We developed a specific class called

GoogleLayer. It inherits from google.maps.Data. The map objects can contain a

collection of different layers ("Street view", "Satellite view", "Hybrid view" and

layers with components).

Figure 2. Google Layer class diagram

The advantage to use google.maps.Data as a base layer class is that it has built-

in functionality for features management. The derived functionality includes

management and event handling of google.maps.Feature collections. The

GoogleLayer implementation extends google.maps.Data class with methods that

match OpenLayers.Layer.Vector definition. Within the extension methods the API

has a direct access to the layer's features (Google Maps API hides the feature

collection and provides access via iterator). At the end, the client code should not

know what type of layer it is dealing with. It uses the same methods and receives the

expected behaviour even on different maps.

2.1.3. Features

As mentioned above OpenLayers provides a wide variety of features on maps

that includes geometry, drawing, vector, markers and others. The geometry features

that handles POI (Point of interest) creation on a map are among the most important

ones. Google Maps API provides two types of geometry representation over the

map: within google.maps namespace or within google.maps.Data namespace. Here it

is important to note that google.maps.Data layer contains of google.maps.Data

features. On the other hand, geometry objects exposed via google.maps namespace

have more flexible behaviour. google.maps.Polygon, Polyline, Circle, etc. provide

the ability to render dynamically objects on a map, to turn on object editing mode

and to handle long list of events. The implemented features classes use the

advantages of google.maps geometry objects on a google.maps.Data layer. A

separate class is created for each component. The new classes are extending

google.map.Data.Feature in order to respect Google Maps interface requirements. To

achieve rendering of dynamic objects on a google.maps.Data layer we designed the

derived classes with google.maps geometry field.

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

102

Figure 3. Feature common class diagram

Our Google map API extender exposes classes for Polygon, Polyline, Circle,

Marker, Drawing and Vector feature (additional fields are added when necessary)

through the use of that class schema.

OpenLayers API provides OpenLayers.Feature.Vector class which instantiates

custom objects on map. Within OpenLayers.Feature.Vector class the map can

contain features in different style, source, etc. In addition, the OpenLayers.Popup

class provides the ability to add custom html content to features on a map. The usage

of these two classes makes it possible to maintain any kind of custom data on map.

Our map module creates a separate feature class that provides the same

functionality as OpenLayers.Feature.Vector and OpenLayers.Popup called

MapFeature. The MapFeature class extends google.maps.OverlayView. It is used as

a prototype class for the Vector features on a map. google.maps.OverlayView is a

special class which aims to display a custom overlay types over the Google map.

MapFeature class implements "onAdd", "draw" and "onRemove" functions of

google.maps.OverlayView. Within "draw" function the MapFeature class handles

creation of DOM elements over the map and proper event attachment to those

elements. "onRemove" manages detachment of DOM listeners and object

destruction. The MapFeature class makes it possible to draw custom images,

dynamic html content, different styles of containers and others over the map with

easy event handling and selection.

2.2. Maps manager

After we have the functionality to create components with the same look and

feel over OpenLayers and Google maps we need a map manager to control the

lifecycle of used map. The module provides the ability to switch easily between

different maps and used API. This functionality is implemented in a bridge layer

which verifies that only one map is used at each moment, the layer disposes unused

objects, components and event listeners. It is responsible for saving and restoring the

map state. This includes memorization of drawn popups, geometry features, event

listeners, etc. The layer is responsible for the recreation of already drawn

components on a map. The module aims to deliver similar look and feel on different

maps.

 API management

JavaScript library for geographic maps visualization

103

 Maps management

 States management

 Positions

2.2.1. API management

A new class called MapFactory is created to give access to implemented

functionality. Within Javascript namespace encapsulation the MapFactory instances

hide used map API (Google or OpenLayers). The namespace exposes public

interface that uses current map API.

2.2.2. Maps management

When a map object is requested from client code the manager layer returns a

GoogleMap or OpenLayers.Map object (GoogleMap and OpenLayers.Map classes

are compatible). During module implementation we faced the problem with

destruction of google.maps.Map object. Google Maps API does not provide the

functionality to manually destroy a map, map release is handled via garbage

collector on page leave. This is a problem for solutions that provides functionality to

change dynamically current map. Our solution proposes a dynamic switch between

OpenLayers map and Google map. The map manager prevents memory leaks: when

GoogleMap should be hidden, all components, layers, etc. on a map and their event

listeners are disposed. Google Maps API base classes, that are used in Google map

API extender, provide an easy way to clear instance references. When all clean-ups

are done, the map manager holds lightweight google.maps.Map proxy object.

Thereby a fully functional map object can be loaded within the same reference on

demand.

2.3. States management

The bridge layer is responsible for management of the map state. During the

switch between OpenLayers and Google maps (and vice versa) it saves center, zoom,

event listeners and other map settings. All of the listed settings should be restored

when the switching is completed. The end user should not be aware of a different

map object usage.

2.3. Positions

The OpenLayers native maps have different projection then Google map. The

usage of completely independent map objects avoids the projection gap between

coordinates over different maps. During map state recreation projection helper

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

104

function is used to indicate whether it is necessary to transform given position. The

functionality returns regular map position as a result.

3. Usage

In the following section the usage of described map module will be

demonstrate.

3.1. Create maps within OpenLayers API only

Figure 4 demonstrates map initialization with OpenLayers API. The code

instantiates map with base Google Satelitte layer. In addition, a vector with custom

image background is displayed on the map.

Figure 4. OpenLayers map initialization code snippet

3.2. Create maps within MapFactory maps manager

Figure 5 demonstrates the usage of our library for dynamic maps. Created map

follows OpenLayers basic concepts for map creation and layer handling. The code

instantiates map with base Google Satellite layer. Custom vector feature is created

JavaScript library for geographic maps visualization

105

on a map. The developers do not need to know the actual map API. They continue to

work with familiar class hierarchy and components. The MapFactory instance is

responsible for displaying data on a map and interactions with Google Maps and

OpenLayers API.

Figure 5. MapFactory map initialization code snippet

4. Conclusion

The described functionality solves future issues related to library updates that

cannot be foreseen. It provides the ability to have a rich variety of compatible

components over OpenLayers and Google map. The module uses native API

methods to show native components. The main goal – to keep the usage of Google

maps and OpenLayers rich functionality – is accomplished. The underling

implementation remains hidden for the developers and the integration of our map

module needs minimum effort and provides safer way to maintain maps.

Acknowledgements

This work is partially supported by the FP17-FMI-008 project of the Scientific

Fund of the University of Plovdiv “Paisii Hilendarski”, Bulgaria.

Teodora Gardzheva, Asen Rahnev, Nikolay Pavlov, Angel Golev

106

References

[1] Google Maps Javascript API V3 Reference, https://developers.google.com/

maps/documentation/javascript/reference, retrieved on January 2016

[2] OpenLayers: Free Maps for the Web: http://openlayers.org/two/

[3] https://github.com/openlayers, retrieved on July 2017

[4] Mapping usage statistics, http://trends.builtwith.com/mapping, retrieved on

August 2017

[5] OpenLayers 3 on Git, https://github.com/openlayers/ol3/issues/4443, retrived

on July 2017

[6] Reference to community discussion for problems that occurred with Google

Maps layer visualization on OpenLayers 2, https://github.com/openlayers/

ol2/issues/1450#issuecomment-157611045, retrieved on December 2015

[7] Inheritance and prototype chain, https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Inheritance_and_the_prototype_chain, retrieved on

December 2015

Faculty of Mathematics and Informatics

Plovdiv University

236 Bulgaria Blvd, Plovdiv 4003, Bulgaria

E-mail: teodoragardjeva@gmail.com, assen@uni-plovdiv.bg,

 nikolayp@uni-plovdiv.bg, angelg@uni-plovdiv.bg

JAVASCRIPT БИБЛИОТЕКА ЗА

ВИЗУАЛИЗАЦИЯ НА ГЕОГРАФСКИ КАРТИ

Теодора Гарджева, Асен Рахнев, Николай Павлов, Ангел Голев

Резюме. Представяме JavaScript библиотека за визуализация на

географски карти в уеб базирани приложения, синтактично и функционално

съвместима с OpenLayers 2. Библиотеката преодолява трудностите, породени

от непрекъснатото развитие на популярни инструменти като Google Maps

API и Bing Maps API. Поддържат се карти както на OpenLayers, така и на

Google. Описан е обектно-ориентираният модел на библиотеката и нейната

функционалност. Илюстрирано е как библиотеката може да бъде използвана

в крайни приложения. Библиотеката е внедрена в реален проект за

управление на автопарк.

https://developers.google.com/%0bmaps/documentation/javascript/reference
https://developers.google.com/%0bmaps/documentation/javascript/reference
http://openlayers.org/two/
https://github.com/openlayers
http://trends.builtwith.com/mapping
https://github.com/openlayers/ol3/issues/4443
https://github.com/openlayers/%0bol2/issues/1450#issuecomment-157611045
https://github.com/openlayers/%0bol2/issues/1450#issuecomment-157611045
https://developer.mozilla.org/en-US/docs/%0bWeb/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/%0bWeb/JavaScript/Inheritance_and_the_prototype_chain
mailto:teodoragardjeva@gmail.com
mailto:nikolayp@uni-plovdiv.bg

