Hayuna xkondpepenuus ,MAuoBanuonnn UKT B HayuHuTe n3cjieBaHus U
00y4eHNeTo: MAaTeMAaTHKA, HHPOPMATHKA U MH(POPMALMOHHM TEXHOJIOTUH®,
29-30 noemBpu 2018 r., [lamnoposo, buarapus
Scientific Conference “Innovative ICT in Research and Education: Mathematics,
Informatics and Information Technologies”,

29-30 November 2018, Pamporovo, Bulgaria

THE FASTER EUCLIDEAN ALGORITHM
Anton lliev, Nikolay Kyurkchiev

Abstract: In our previous works [12]-[22] we give a possible way to
optimize classical widespread realizations of Euclidean algorithm. These
algorithms are faster about 10% and about 30% in iterative and recursive
ways of implementation respectively because we reduce some operations.
We will note that recursive realizations of these algorithms [12]-[22]
consume only about 50% of operation memory which is necessary in
realizations given by other authors [3]-[11], [23]-[31]. The calculation of the
greatest common divisor is one of the most important tasks in Number
Theory. When ask Google for “Euclidean algorithm” in September 2018 we
receive more than 10 500 000 indexed pages. Using well-known common
apparatus for analysis we formulate the theorem which guarantee correctness
of new [12]-[22] described by us Euclid’s algorithm.
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1. Introduction

The Euclidean algorithms and their modifications [1]-[31] work correctly
for every natural numbers a>0 and b > 0. Without loosing of generality we will
explore the case when a>Db. Let a,=a and a, =b (analysis of the other case

a<b is analogical because the only that we need is to swap a and b).

2. Main results

Let us denote by m(m=>1) the number of divisions in the Euclid’s
algorithm.

If m is even number the process [12]-[22] can be defined by the following
way:
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First step:

a,=Ca, +a,,a =Ca,+a,;
Second step:

a, =C,a,+a,,a, = Cya, + a;; )
L(m+1)/2]step:

a,,=C ,a ,+a.,a ,=C .a +a

m? 'm-1 m+11?

where ¢, =la, /a,, ], 0< j<m-1.

j+1

It is obvious that if m is odd number then every “step” will take one-half
of “some step” of (1) and eventually one-half from “next step” of (1) which is no
problem for organization of computational process. This division in “steps” is
only for easier explanation of main idea.

Without loosing of generality we will explore the case when m is an even
number (the case when m is an odd number is analogical as we already noted).

The process (1) will guarantee that we will keep correct order i.e.
(8 z2a)>(a,>a;)>....
Let us denote the greatest common divisor of a and b by g = gcd(a,b).

Here we will set that the faster Euclidean algorithm [12]-[22] is based on
the following equivalence:

(g]la) and (g|b) <
(2)
g|lamodb,p=0, | and | g|bmod p,q=0 |.
p T
We will point out that if p=0 or q=0 at the right hand side of
equivalence (2) then gcd(a,b) =b or gcd(a,b) = p respectively.
So, gcd(a,b)=gcd(a,,a,).
We will prove that a_,, =0.

>2 when m>1.

m-1—

Simple can be seen that ¢
Now we will prove that a_ = g = gcd(a,b).

Using (1) on first step we receive a >a,moda,, a,=a,moda, and
a, >a moda,,a, =a moda, and we can conclude that gcd(a,,a )= gcd(a,,a,).
On the second step: a,>a,moda,, a,=a,moda, and a,>a,moda,,
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a; =a,moda, and we obtain that gcd(a,,a,)=gcd(a,,a;). This process has
limited number of divisions because (a, >a,) > (a, >a,) >... and on step number
L(m+1)/2] for some m we will receive a_, =0.

These calculations can be written in algorithmic form:
Euclid(a,b)
p=amodb
if (p=0)
return (b)
g=bmod p
if (q=0)
return (P)
return Euclid( p,q)
The calling of algorithm Euclid(a,b) is:
if (a>h)
Euclid(a,b)
else
Euclid(b,a)
So we have proved the following:

Theorem. The Euclid’s algorithm for natural numbers a and b gives as a
result gcd(a,b).
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IHO-BBP3UAT AJITOPUTDHBM HA EBKJINL

AnToH UnueB, Hukounait Kropkunesn

Pesome: B namu npenuirau padotu [12]-[22] naBame Bb3MOXKEH IBT 3a
ONTHUMH3UPAHE HA KIACHYCCKU MIUPOKOPA3MPOCTPAHEHU pean3alii Ha
anroputbma Ha EBxima. Te3u anroputmu ca mno-6sp3u ¢ okosno 10% u ¢
okoJ10 30% CHOTBETHO NMPHU UTEPATUBHA M PEKYPCUBHA pealu3aius Mopaan
penyiupane Ha Hakow omeparuu. llle orbenexxum, de peKypCUBHUTE
peanu3anuu Ha Te3u anroputMu [12]-[22] koncymupar camo okosio 50% ot
olepaTHBHATA TAMET HY)KHa Ha peajHM3alliuTe JaJICHU OT JAPYTH aBTOPU
[3]-[11], [23]-[31]. U3uucnsgBaHeTO Ha Hai-roJeMHUs OO JACTUTEI € ¢IHA
OT Hali-BakHHTE 3a1a4u B Teopus Ha ymcnara. [Ipu 3asBka kbM Google 3a
“Euclidean algorithm” mpe3 centemBpu 2018 r. momyyaBame moBeue OT
10 500 000 mamekcupanu crpaHuiid. M3mon3Baiiku qoOpe M3BECTHHUS OO
amapar 3a aHaJm3 GopMyIUpaMe TeopeMaTa, KOTo TapaHTUpa KOPEKTHOCTTA

Ha HoBMS [12]-[22] onucan ot Hac anropuThbM Ha EBKm.
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