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Abstract: In our previous works [12]-[22] we give optimized solutions of
Euclidean algorithm. Computational effectiveness of these algorithms [12]—
[22] make them more useful from practical point of view in comparison to
[3]-[11], [23]-[31]. Using the known general analysis of extended Euclid’s
algorithm we give theorem which approve correctness for new [12]-[22]
suggested by us extended Euclidean algorithm which is one of the most used.
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1. Introduction

Let a>0 and b >0 be a natural numbers and by m(m>1) we denote the

number of divisions in the extended Euclid’s algorithm. Without loosing of
generality we will explore the case when a>Db.

2. Main results

Theorem. Let a and b be a natural numbers and let their greatest common divisor
isdenoted by g = gcd(a,b). Thenthere are integers X and y forthat xa+ yb=g.

Proof. We use the Euclid’s algorithm [22] for a, =a and a, =b (analysis of the
other case a <b is analogical because the only that we need is to swap a and b).

If m is even number the iteration procedure [12]-[22] can be expressed by the
following:
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First step:
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Second step:
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where ¢, =la, /a,, ], 0<j<m-1.

j+l

As we already mention in [22] — it is obvious that if m is odd number then
every “step” will take one-half of “some step” of (1) and eventually one-half from
“next step” of (1) which is only technical aspect in computations’ organizing. This
division in “steps” is only for easier explanation of general idea.

We will explore the case when m is an even number (the case when m is
an odd number is analogical as we noted in [22]).

So, from (1) we receive that g=a,6=g9cd(a,a) a,,=0 and

a) (¢ 1 c.. 1)(9
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We set N = = and  consequently
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Because detN,,, =(-1)" we obtain N, :(_1)”‘( 9:—1 —dem_l}

m-1 m-1
From here g, ,a—e, b=(-1)"g and x=(-1)"g,,, y=(-1)""€, ..
This process can be written in this algorithmic form:

Euclid(a, b, ref x, ref y)

a2 =amod b
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co=a/b
if (a2 < 1)
x =1
y =0
return b
a3 = b mod a2
cl=D>b/ a2
if (a3 < 1)
X = - CO
y =1
return a2

g = Euclid(a2, a3, ref x, ref y)
y - = cl*x; x - = cO*y
return g
and the calling is:
if (a > b)
Euclid(a, b, ref y, ref x)
else

Euclid(b, a, ref x, ref y)
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IHO-BbP3UAT PASIIMPEH AJITOPUTHBM HA EBKUIM/{

AnToH UnueB, Hukounait Kropkunen

Pesrome: B nHamm npemumiam padotu [12]-[22] maBame ontumusnpanu
peteHus 3a anroputbMa Ha EBkina. M3uncauTenHara epeKTUBHOCT HA TE3H
anroput™u [12]-[22] ru npaBu 1mo-moyie3Hy OT MpaKTHYECKa IIICHA TOYKa B
cpaBuenue ¢ [3]-[11], [23]-[31]. U3non3Baiiku u3BeCcTHHS OOII aHATIHM3 HA
pa3lIMpeHHs alropuThM Ha EBKIMI, naBamMe TeopeMa, KOSTO YTBBPIKIaBa
KOPEKTHOCTTa Ha HOBH [12]-[22] mpeaokeH OT HAaC pa3IIUPEH alrOPUTHM

Ha EBKIIMJ, KOMTO € €IUH OT Hall-u3M0JI3BaHUTE.
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