Hayuna xkondpepenuus ,MAuoBanuonnn UKT B HayuHuTe n3cjieBaHus U
00y4eHNeTo: MAaTeMAaTHKA, HHPOPMATHKA U MH(POPMALMOHHM TEXHOJIOTUH®,
29-30 noemBpu 2018 r., [lamnoposo, bbarapus
Scientific Conference “Innovative ICT in Research and Education: Mathematics,
Informatics and Information Technologies”,

29-30 November 2018, Pamporovo, Bulgaria

USING FIREBIRD EMBEDDED WITH NET CORE 2 AND
ENTITY FRAMEWORK CORE FOR CLOUD-BASED SYSTEMS

Dimitar Nikolov, Nikolay Pavlov, Asen Rahnev

Abstract. This article describes how Firebird Embedded [2] can be used as
local, maintenance free database for embedded and distributed systems built
on Net Core. We present a proof of concept project implemented to verify
the performance of Firebird Embedded [2] in distributed embedded systems.
Source code snippets are provided.

Keywords: 10T, Firebird, Entity Framework, .Net Core

1. Introduction

When building embedded and distributed systems it is necessary to provide
independent, reliable nodes. Common designs of distributed systems contain
either a mesh of standalone nodes, which communicate between each other or a
centralized network of nodes with one master node. In order to ease user
experience the designed system will have one master node (accessible through a
web page) and several slave nodes which should gather information from nearby
loT devices through Bluetooth, WiFi or RF communication. Slave nodes will
store information locally in order to reduce load to master node by making data
validations, send automated command to devices and others.

This article describes proof of concept project implemented to verify that
Firebird Embedded [2] could be used as local, maintenance free database for
embedded and distributed systems [5]. There are insufficient resources on the
topic of integrating Firebird [2] with .Net Core [1]. Online materials and
documentation are really poor when it comes to the embedded version of
Firebird [3]. Although there are nuget packages for .Net Core user will be
surprised to find out that they don’t work out of the box for the embedded version.
Additional setup is required to achieve reliable database access and this setup is
described later on.

Jata na nonyuasane: 03.12.2018 r. 49
Hata Ha periensupane: 29.03.2019 r.
JlaTta Ha nyonukysane: 17.05.2019 r.



Using Firebird Embedded with NET Core 2 and Entity Framework Core ...

2. Functionality

Application should be able to store and retrieve data from Firebird [2]
database using Entity Framework [4] and it is Object-Relational Mapping (ORM)
features. The main focus is on CRUD actions and simple queries.

Running in x86 environment:

C:\Program Files (x86)\dotnet> ./dotnet.exe
"C:\publish\fb\FirebirdEmbeddedDemo.dll'

Running in x64 environment:

C:\Program Files\dotnet> ./dotnet.exe
"C:\publish\fb\FirebirdEmbeddedDemo.dl1ll'

Running in Linux x64 environment:
dotnet FirebirdEmbeddedDemo.dll

3. Technical description

In order to proof integration, simple console application was created
targeting .Net Core 2.1 [1]. The project references two nuget packages:

FirebirdSql.Data.FirebirdClient

This package provides all necessary classes to connect and use Firebird [2]
database from .Net Core [1] application.

FirebirdSql.EntityFrameworkCore.Firebird

This package inherits Entity Framework Core [4] classes and provides
extensions to work with Firebird [2] databases from .net application as you would
do it with Microsoft Sqgl Server.

Creating database

Database creation was performed with isgl [5] tool from Firebird [2]. Start
isgl [5] run

CREATE DATABASE 'D:\data\test.fdb' page _size 8192
then
CON>user 'SYSDBA' password 'masterkey';

The first row creates database in the specified location with the specified
page_size. The second command connects to the database using user and
password.

Creating schema:

create table "Todos" (
"Id" 1integer generated by default as identity primary key,
"Name" varchar(50) not null,
"Description” varchar(500) );

50



Dimitar Nikolov, Nikolay Pavlov, Asen Rahnev

The schema was used just to verify usability.
Creating dotnet core project
Creating project with visual studio

There are many guides on this topic. In this case dotnet core Console
Application targeting v2.1 was created.

Installing required nuget packages

FirebirdSql.Data.FirebirdClient
FirebirdSql.EntityFrameworkCore.Firebird
Microsoft.EntityFrameworkCore

Download required Firebird version

From Linux setup

sudo 1n -sf /usr/lib/x86_64-1linux-gnu/libtommath.so.1
/usr/1ib/x86_64-1linux-gnu/libtommath.so.0

https://www.ibphoenix.com/files’/Embedded_fb3.pdf
Detect Operating System and Architecture

The application cannot load single library file and work with it, because
Firebird assemblies are platform dependant. This requires the application to load
required library files on startup based on operating system. In order to achieve
that we will be using Runtimelnformation class provided by .NET Core
Framework [1].

Checking for operating system:

RuntimeInformation.IsOSPlatform(OSPlatform.Windows)
or

RuntimeInformation.IsOSPlatform(OSPlatform.Linux)

The method IsOSPlatform returns boolean if the platform matches the
provided parameter.

To find which CPU architecture is on the current platform we can use a
property of the class Runtimelnformation

RuntimeInformation.ProcessArchitecture == Architecture.X64

The property returned type is Enum having members x86, x64, Arm,
Armo64.

Prove

In order to prove that the setup with Firebird Embedded [2] and Entity
Framework [4] works we will create sample context with one table in the model.
The model will use the previously created table Todos.

o1



Using Firebird Embedded with NET Core 2 and Entity Framework Core ...

Model

Todos class is pretty simple. It is good to have the table name with attributes
when using Firebird client tools. Firebird client tools assumes that default for
Firebird naming convention is used which is all names are with uppercase letters.

[Table("Todos")]

public class Todos

{

[Key]
public int Id { get; set; }

[Required]
[StringlLength(50) ]
public string Name { get; set; }

[StringlLength(500) ]
public string Description { get; set; }

Context

The defined context is very simple.
public class DemoContext : DbContext

{

private readonly string _connectionString;

public DemoContext(string connectionString)

{
_connectionString = connectionString;
}
protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
{
optionsBuilder.UseFirebird(_connectionString);
}
protected override void OnModelCreating(ModelBuilder builder)
{
base.OnModelCreating(builder);
}
public virtual DbSet<Todos> Todos { get; set; }
}

52



Dimitar Nikolov, Nikolay Pavlov, Asen Rahnev

Usage

Simple data saving and retrieving operations are executed when the console

application runs. Here is it:

DemoContext demoContext = new DemoContext(connectionString);

for (int 1 = 0; 1 < 10; i++)
{
demoContext.Todos.Add(new Todos()

{
Name = "Blah blah",

Description = "describe"

})s
}

demoContext.SaveChanges();

foreach(var todo in demoContext.Todos)

{
Console.WritelLine($"ID: {todo.Id} NAME:{todo.Name}

DESCRIPTION:{todo.Description}");
}

4. Conclusion

This prove of concept project required deep learning of poorly documented

Firebird [2] features and how they work under different operating systems.
However, the result is worth all efforts, because at the end Firebird [2] was proven
to work with .Net Core [1] under all operating systems. This gives the designed
system easily maintainable relation database to use in its distributed nodes.

Acknowledgements

This paper is partially supported by project FP17-FMI-008 of the Scientific

Research Fund of Plovdiv University “Paisii Hilendarski”, Bulgaria.

[1]
[2]
[3]
[4]

References

Microsoft, ASP.NET Core Documentation, 2018,
https://docs.microsoft.com/en-us/aspnet/core/

Firebird, Firebirdsql 3.0.3 Documentation 2018,
http://www.firebirdsql.org/en/documentation/

Firebird, Firebirdsql
https://www.firebirdsgl.org/pdfmanual/html/ufb-cs-embedded.html
Entity Framework Core

53



Using Firebird Embedded with NET Core 2 and Entity Framework Core ...

https://docs.microsoft.com/en-us/ef/core/

[5] Firebird, Firebirdsgl 3.0.3 Documentation 2018,
https://www.firebirdsql.org/pdfmanual/html/gsg10-creating.html
http://www.firebirdfaq.org/Firebird-Embedded-Linux-HOWTO.html
https://www.firebirdsgl.org/pdfmanual/html/ufb-cs-embedded.html
http://www.ibphoenix.com/files/Embedded_fb3.pdf

[6] Nikolov D., N. Pavlov, A. Rahnev, Home IoT Monitoring and Management
System, Proc. of Scientific Conference “Innovative Software Tools and
Technologies with Applications in Research in Mathematics, Informatics
and Pedagogy of Education”, 23-24 November 2017, Pamporovo, Bulgaria,
pp. 25-32, ISBN: 978-619-202-343-0.

Faculty of Mathematics and Informatics
Plovdiv University “Paisii Hilendarski”
236 Bulgaria Blvd, 4003 Plovdiv, Bulgaria

e-mail: d.nikolov@windowslive.com, nikolayp@uni-plovdiv.bg,
asen@uni-plovdiv.bg

MN3I10OJI3BBAHE HA FIREBIRD EMBEDDED C NET CORE 2 1
ENTITY FRAMEWORK CORE 3A CUCTEMMU B OBJIAKA

JAumutsp Hukosos, HukoJiaii I1aBiios, Acen Paxues

Pe3rome. CraTusita onricBa kak MoxkeM ja usnoissame Firebird Embedded
KaTo JIOKasHa 06a3a JaHHHW, KOMTO HE Ce HYXIae OT aIMHHUCTPAIUs, BbB
BrpajieHn W pasnpenenenu npunoxeHus, Ha Net Core. IlpencraBen e
NPOTOTHII, KOMTO Ja poBepH npou3BoauTeaHocTTa Ha Firebird Embedded B

pasrnpeienieHu cucTeMu. [IpeicTaBeH € U3XO0ICH KOJI.

54



