Hayuna xkondpepenuus ,MAuoBanuonnn UKT B HayuHuTe n3cjieBaHus U
00y4eHreTo: MAaTeMAaTHKA, NHPOPMATHKA U MH(POPMALMOHHM TEXHOJIOTUHN®,
29-30 noemBpu 2018 r., [lamnoposo, bbarapus
Scientific Conference “Innovative ICT in Research and Education: Mathematics,
Informatics and Information Technologies”,

29-30 November 2018, Pamporovo, Bulgaria

GENERATING REPORT DOCUMENTS FROM
TEST ANYTHING PROTOCOL IN JAVASCRIPT

Georgi Bogdanov, Nikolay Pavlov, Asen Rahnev

Abstract. TAP, the Test Anything Protocol, is a direct text-based interface
between testing modules in a test harness. The basic assumption behind TAP
Is that it is a standard format useful for separating the test execution and raw
data generation from the test management and reporting. The protocol
loosely allows joining a set of small testing tools (TAP Producers) in a
language agnostic way in order to consume the generated output (TAP
consumer) and generate a unified report of the test result. This article
describes a TAP consumer NodeJS CLI essential tool designed to unify a
distinct set of test results and predefined set of target test requirements into a
single human readable report document intended for practical use by product
owners, product shareholders, business analysts, project managers, etc.

Keywords: TAP, NodeJS, CLI, Document Generation

1. Introduction

Modern software development typically relies and heavily demands that
new software naturally includes some proper form of tests, even more so for large-
scale development. Modern solutions tend to become more segmented and
modular based in order to allow component based structures and support from
different teams or organizations, and easier maintainability, hence it is very likely
that more than one test project will exist. Furthermore, a particular project might
contain various testing libraries, which perform different tests types, such as
functional testing and/or non-functional testing.

Numerous testing libraries or platforms frequently mean different result
output and issues with the result analysis. Enforcing a single testing library or
protocol, or solution is rarely possible when dealing with multiple software

Jata na nonyuasane: 03.12.2018 r. 55
Hata Ha periensupane: 29.03.2019 r.
JlaTta Ha nyonukysane: 17.05.2019 r.

Generating report documents from Test Anything Protocol in JavaScript

languages and environments, a library or test harness that can fit anywhere is very
hard to achieve and would probably be hard to master for all the teams involved
in the development. There are tools facilitating testing cross-platform but they are
typically not cross-language. This constitutes the unique problem of aggregating
multiple test result into a single source of truth and creating a coverage report or
stylized test acceptance coverage result for example.

TAP, the Test Anything Protocol is a highly parseable, human-readable,
loosely specified format for reporting test results. It rose to popularity in the Perl
community, with CPAN’s Test family [1]. The protocol defines a philosophy that
all parsers should follow [2]:

e Should work on the TAP as a stream (i.e. as each line is received) rather
than wait until all the TAP is received.

e The TAP source should be pluggable (i.e. don’t assume it is always
coming from a Perl program).

e The TAP display should be pluggable.
e Should be able to gracefully handle future upgrades to TAP.
e Should be forward compatible.

o Ignore unknown directives

o Ignore any unparsable lines

In order to achieve tests result standardization and unification, TAP will be
used as a medium between the different modules and testing harnesses. Utilizing
this, we can develop a tool that will work as a TAP consumer and later on use the
consumed data to generate test acceptance results document.

2. Requirements

The following tool requirements are provided:

e It must be platform independent and not require GUI

¢ |t must be able consume TAP output from different producers

¢ |t must be able to accept an additional user provided data

¢ [t must be able to output stylized ctemplate with test acceptance results

2.1. Platform independence and text based interface

The users of the tool want be able to use the it on different platforms
(Windows, Linux. Mac) because the modules they are testing and generating test
results for will be on multiple platforms. Additionally, the place where
applications and tests are ran will include servers or virtual environments where

GUI is often excluded from the platform or system in order to conserve system
resources.

56

Georgi Bogdanov, Nikolay Pavlov, Asen Rahnev

NodelS is a good solution because:

e |t is a multiplication event driven JavaScript run-time. It can be easily
installed on all the required platforms.

e Allows creating text-mode programs or command-line interfaces (CLI)
which can be globally registered into a given operating system and used
anywhere in that OS.

e Has existing integration with TAP consumers/producers via humerous
libraries

e Strong ecosystem with hundreds of thousands of packages available for
all manner of purposes

2.2. Must consume TAP output form different producers

NodeJS allows consuming stream output and reading file streams.
2.3. The additional user provided data

Users need to be able to provide external data related to the business logic
or the templates for generating documents.

2.4. Stylized templates

Users have to be able to define and edit or create their own templates to fit
specific needs.

3. Implementation and functionality

3.1. Defining common conventions
in the different test suites and packages

The common conventions are defined to ease the test process information
negotiation and handling so that this info can be easily processed and mapped or
read. Defining the conventions has to conform and be aligned with the most
familiar language employed in the component tests and possibly with the
language/library that will handle the TAP consumption. TAP output is streamed
in a way that will allow maximum useful data output and minimum loss of
valuable test process information.

First, the internal test conventions and process were defined so that each
test would utilize a standard method that generates and handles each test’s meta
information stream to the TAP output. This common process operates a minimal
set of methods.

In the case with selenium tests for example, just two methods were used,
one to setup the test description and one more to setup the test standard output.

S7

Generating report documents from Test Anything Protocol in JavaScript

let testDescription = {
objective: 'Create and run example',
preConditions: 'Web Browser',
configuration: '',
duration: '15 seconds',
coverage: 'Dashboard’,

note:

let steps = [
'step_1:Click navigation',
'step_2:Click Create button’,
'step_3:RQOD_4881'

function tapOutputDescription (testDescription, t) {
for (const propertyName of testDescription) {
if (testDescription.hasOwnProperty(propertyName)) {
t.log(${propertyName}: ${testDescription[propertyName]})

function tapOutputStep (steps, next, t) {
t.log(steps[next])

return next++

To setup the description in the beginning of each test we manipulate a
simple object as template and it is populated with a key-value pair and this
information is later be handled by the TAP consumer CLI tool.

For the steps output during test execution, we use a predefined key for steps
and increasing number sequence to show a human-readable indication, as a value
we use either a brief functional description provided by QA, developer, business-
analyst or a unique ID key that adheres to a requirement defined by Product
owner, client, business-analyst or QA.

58

Georgi Bogdanov, Nikolay Pavlov, Asen Rahnev

The main process of executing each test then outputs the test name, test
description meta data and then on each relevant step, the corresponding steps’
key-value output information. This way the test goal reach and value of
completion is clear and transparent and easy to inspect, when the tests are run. It
IS easy to detect the tests percent of successful completion. If the test was ran
without any issues or errors, the full steps output will be visible and if there is an
issue somewhere inside the test execution it will be easier to spot and identify,
AND easier to fix.

When errors in the test execution are detected earlier during that test
definition or execution this saves time and development effort. Defining a better
general output from the tests allows for non-developer or non-technical personnel
to read and understand if there are any issues, and this improves the time required
for fixing. A clear and transparent process saves time in communication handling.

3.2. Handling test suites without standard TAP output

In some cases when the test suite does not have TAP standardized output it
has to be simulated using available output from the test suites platform (eg.
Postman).

In Postman for example, similar test meta description and steps execution
were used, but in this case an output method was added so that TAP output could
be simulated and stored into a file for example.

var jsonData = pm.globals.get('testDescription’)

tests["objective: + jsonData.objective] = true // debug message

tests["preConditions: " + jsonData.preConditions] = true // debug
message

// or

pm.test("objective: " + jsonData.objective, true) // debug message

pm.test("preConditions: " + jsonData.preConditions, true) // debug
message

The TAP output has to be gathered/read later by the TAP consumer, in most
cases the output can be read as a stream and processed simultaneously, but in
cases when we have to simulate TAP output the data is often read from a file and
concatenated to the stream data.

3.3. NodeJS CLI interfacing

NodeJS is extremely useful for creating command-line applications [3][4].
In order to speed up the time for implementation and instead of reinventing the
wheel a number of third-party packages designed to help work with the command
line was selected for use:

e chalk — for colorizing the output

59

Generating report documents from Test Anything Protocol in JavaScript

e clui — additional visual components
e clear — to clear the console

¢ Inquirer — a collection of sophisticated interactive command line user
interfaces.

e Stream — for working with streaming data
e tap-merge — merge multiple TAP streams
e tap-parser — parsing test anything protocol

In order to comply with the TAP Philosophy the CLI tool is developed so
that it can accept both stream from multiple sources and file input. The user that
runs the CLI tool is responsible for providing the arguments that point to a file
and/or a stream and issuing the correct commands or additional argument to
initialize interfacing with the tool. Executing of the TAP consumer can be
attached either after each test is ran to directly consume it is results, or as a
separate process executed by the user.

The application is created so that it can accept XML or CSV file formats as
data input used to match test description and unique ID keys and include
supplementary information for either the test and it is coverage or for the template
and the final document which will be generated and presented to the end users.

3.4. Templating

For the final document output the user can provide a specific template file
to be used. The user can either point to the new template using the provided
interface commands or specify it as an argument to command prompt call to the
application. If the user does not provide any specific template to be used, by
default, the application provides a predefined Handlebars HTML template with
an explicit definition of available variables.

The initial design of the default template was selected so that it will mimic
the official test results documents presented to the clients and product owners.
The fundamental concept is that the users will rarely have to alter the output style
and design.

Handlebars was picked as first template language of choice because it
delivered enough flexibility in the template, allows creating semantic templates
efficiently, the templates can be essentially logic free (where the code and view
are isolated) helping to preserve the separation of concerns principle, and it
provides partials and helper methods defined in the code to enable better parsing
of the input data [5]. Another significant factor was that It is using a well know
syntax for the development teams of the software components and applications.

handlebars.registerHelper("testOk", v => {

return new handlebars.SafeString(

60

Georgi Bogdanov, Nikolay Pavlov, Asen Rahnev

v
? 'NOK'
'0K"'

)

}s

handlebars.registerHelper("breaklines", function(text) {
text = handlebars.Utils.escapeExpression(text);
text = text.replace(/(\r\n|\n|\r)/gm, "
");

return new handlebars.SafeString(text);

})s

handlebars.registerHelper("testReportProperty", (property, v) => {

return module.exports.extractPropertyFromSystemOut(property, v);

})s

handlebars.registerHelper("transliterateOutput"”, (property, v) => {

return module.exports.transliterateOutput(property, v);

})s

The originally manually created test acceptance result documents were
made with Microsoft Word and the generated documents based on handlebar
templates were a little different when compared, so a second templating format
was added to support specific needs of some of the end users.

In order to obtain maximum conformity with Microsoft Word, the file
format used was docx templates in combination with “docx-templates” [6]
NodelS library. With the following combination, the users can write their
templates in a well-known format simply using placeholders in the document and
then have the application replace these placeholders with the proper contents. The
decision to use docx templates with placeholders or queries in them was made
because most of the libraries for NodeJS available do not adequately support all
of Microsoft Word features and It would have been harder to generate specific
documents using code alone.

3.5. Output

The ultimate output of the processed templates obtain a finished document
that can be viewed by all users and targeted audience. The supported output
formats include:

e PDF — handlebars and docx templates are converted to PDF output file;

61

Generating report documents from Test Anything Protocol in JavaScript

e HTML — handlebars template is outputted as a file;
e DOCX — supported using handlebars and docx templates;
e Email* — html contents email using handlebars template stylized for

emails (has specific CSS support compared to normal browser viewed
html).

With the above-mentioned output formats, the needs of a diverse audience
of end-users are satisfied.

5.1 TESTCASES

5.1.1 APPLICATION AVAILABILITY

TCO1

Objective _Test if Web Application is available
Pre-conditions Web browser

Configuration

Duration 2min

Coverage Accessibility of the application
Note

Start Web Browser
Type Web App address
Press the "Enter" button

Final remarks & Conclusion

Results OK

Analysis The application starts as expected

Conclusion OK J
Figure 1. DOCX Output

Objective View Categores

Pre-conditions Page Loaded

Configuration

Duration 10 sec
Coverage Menu
Note
Final remarks & Conclusion
Results NOK
Analisys

name: AssertionError

message: Rejected promise returned by test

values: {"Rejected promise retumed by test. Reason.” "Error { details: undefined, message: ‘'element
("divicategory™) stdl not visible after S5000ms’, type: “‘WatUntilTimeoutEmor' }}

at’ new WaltUntilTimeoutError (node_moduies/webanverio/bulidMb/utiisEmrerHandier js:149:12)

Conclusion NOK

Figure 2. HTML Output

4. Conclusion

The final NodeJS CLI tool for generating test acceptance results report was
tested and carefully verified to comply with the required functional requirements

62

Georgi Bogdanov, Nikolay Pavlov, Asen Rahnev

and its implementation was used to generate real production report documents.
The resulting use of the application will save developers, business analysts,
quality assurance engineers and product owners many hours in creating
documentation and verifying that all tests are running properly and in compliance
with the defined requirements. The development of the tool will continue by
expanding it further with more templates and options, further analysis of it is
value, benefits and its use in projects will be performed in the future.

Acknowledgements

This paper is partially supported by project FP17-FMI-008 of the Scientific
Research Fund of Plovdiv University “Paisii Hilendarski”, Bulgaria.

References

[1] Test Anything Protocol | Node Tap, c2015-2019,
https://www.node-tap.org/tap-format/

[2] TAP Philosophy - Test Anything Protocol, c2015-2019,
https://testanything.org/philosophy.htmi

[3] Writing Command-Line Applications in NodelS, Peter Benjamin, 2015

https://medium.freecodecamp.org/writing-command-line-applications-in-
nodejs-2cf8327eee2

[4] Build a JavaScript Command Line Interface (CLI) with Node.js, Lukas
White, Michael Wanyoike, 2018,

https://www.sitepoint.com/javascript-command-line-interface-cli-node-js/

[5] Generate a Resume in DOCX and HTML at the Same Time, Mike Bybee,
2015

https://mikebybee.com/blog/generate-resume-in-docx-and-html-at-the-
same-time

[6] Word documents, The Relay Way. Bridging Word templates, GraphQL
queries and JavaScript snippets, Guillermo Grau, 2018

http://guigrpa.github.io/2017/01/01/word-docs-the-relay-way/

Faculty of Mathematics and Informatics
Plovdiv University “Paisii Hilendarski”
236 Bulgaria Blvd, 4003 Plovdiv, Bulgaria

E-mail: georgi.bogdanov@outlook.com, nikolayp@uni-plovdiv.bg,
asen@uni-plovdiv.bg

63

Generating report documents from Test Anything Protocol in JavaScript

I'EHEPUPAHE HA CITPABKHU OT ITPOTOKOJIA
TEST ANYTHING YPE3 JAVASCRIPT

I'eopru boraanos, Huxkodaii I1aBioB, Acen Paxnen

Pe3tome. IIpotokonobrT Test Anything Protocol (TAP) e mpsk TekcTos
uHTepdeiic Mexay TECTOBU MOJIYJIH B TecToBa cucTtemMa. OCHOBHATA Hjies Ha
TAP e na O0bne cranmapteH ¢opmar, KOHNTO criomara 3a pas3fesisHeTO Ha
U3MBJIIHEHUETO HA TECTOBETE M T€HEPUPAHETO Ha MHbPBUYHM JAHHH OT
YVIPAaBJICHUETO HA TECTOBETE M HU3TOTBSIHE Ha cHpaBkU. [IpoTokonbT
no3BoJisiBa ¢1ab0 CBbp3BaHEe Ha Majku MHCTpyMeHTH 3a TectBaHe (TAP
Producers) no He3aBHCHM OT €31MKa HA4MH, J]a C€ KOHCYMUpPA MTPOU3BEACHHUS
pesyntar (TAP consumer) u ma ce reHepupar yHU(PHUIIMpPaHU CHpPaBKHU 3a
pesynratute. Ta3u cratus onucBa TAP Consumer nnctpyment Ha NodelS,
MPOEKTUPAT Ja 0OCAMHU OMPEEICHO MHOKECTBO OT TECTOBU PE3YITaTH U
npeaeduHUpPaHU TECTOBU U3MCKBAHUS B €HA 00IIIa CIIpaBKa, KOSITO Ja MOXKe
na ObJe pa3dyeTeHa JIECHO OT YOBEK M MpeaHa3HaueHa 3a PbKOBOJIUTENIN Ha
MpPOAYKT, KIIOYOBH YYaCTHUIM B TIPOEKTa, OW3HEC aHAIU3aTOPH,

PBKOBOANUTCIIN IIPOCKTH U AP.

64

