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Abstract. In recent works [12]-[31] the authors gave many optimized
versions of classical widespread realizations of Euclidean algorithm. Here
we present a new faster version of the Euclidean Sequencing Algorithm
(ESA) [40] which algorithm has been proven to be optimal for searching
binary cycles with minimal variance in [40].

Keywords: Euclid’s algorithm, Euclidean algorithm for binary cycles with minimal
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1. Introduction
The Euclidean algorithms and their modifications [1]-[40] are widely
spread in many practical oriented tasks.
Statement of the problem [40]. Let A:=[a,,4a,,...,a,] be an alphabet of

n:= \A\ distinct symbols and m e N" is a vector of n positive integers representing
prescribed multiplicities of said symbols in such a way that

[a|m, ]=|a.a...a |, a A The couple S:=(Am) shall be termed a
m, times
“cyclic sequencing problem”. Let N = ka :
k=1
Let C:Z, — A be a mapping from the group of rest classes modulo N to
the alphabet with C; :=C([ j], ).
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A Note on Euclidean Sequencing Algorithm

Let J, ::C‘l(ak):{[j]N e, ‘Cj :ak} be the counter image of the k th
symbol in the alphabet. Let Q(A,m)::{C:ZN — Alm, =3, vk e{l,...,n}} be

the set of “admissible” cycles.
In [40] the following theorem has been proved:

Theorem 1. Let (A,m) be a cyclic sequencing problem with a binary
symbol alphabet. Then the cycle CeQ(A,m) returned by the Euclidean
Sequencing Algorithm minimizes variance.

Let us consider the following Euclidean Sequencing Algorithm (ESA) [40]:
/linitialization
Ay =8y, max{m, m,}’ A=
B, = Qg mingmym, 37 D, =
1=0; R, =1;
/llooping is iterated until a null rest is found
while R, >0do

=i+

N; =R +D;

Q = LPI / Di_|;

R=R-QD;

A=A%B ;

B =A

P..=D;

D, =R
end
/finalization
C=A";

Algorithm 1. Euclidean Sequencing Algorithm (ESA)

J

arg max{ml,mz}‘ )

J

arg min{m,,m,}

2. Main results

We suggest the following new optimization of Euclidean Sequencing
Algorithm (ESA):

/linitialization
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J

A) = aarg max{ml,mz}; Pl =

D, =

arg max{my ,m,}

B,=a J

arg min{m;,m,}? arg min{m,,m,}|?

I=0;R,=R;R,=D,;

/llooping is iterated until a null rest is found

do
=i+
Q= I—Ri—z / Ri—lj;
Ri=R_,-QR.;
A=A%B;
B =A,

while R, > 0;

[/[finalization
C — ARi—l;

Algorithm 2. Optimized Euclidean Sequencing Algorithm (ESA)

Obviously, the Algorithm 2 is optimized version of Algorithm 1 because
for every i >1itis satisfiedP =R_,, D,=R_, andN, =R_, + R, . As a result the

computation of P, D, and N, in Algorithm 1 is unnecessary in new Algorithm 2.

Numerical Example.
Using Algorithm 1 the following example is given in [40]:

i A N; P, D; @Q; R; A B;

0 Ao = a1 Bg = as
1 [Ao,By] 32 18 14 1 4 A =A}By By =4,
2 [A1,B1] 18 14 4 3 2 Ay=A}B1 By=A;
3 [A2,Ba] 6 4 2 2 0 Az=AiB,

C = A2

For the same example Algorithm 2 gives the following results:
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[1]

[2]

[3]
[4]
[5]
[6]
[7]

i A; Q: R A; B;
-1 18
0 14 Ao=a1 By = as
1 [Ag,Bo)] 1 4 A;=A}By B;= A
2 [A1,B1]] 3 2 A;=A}B1 By=A4
3 [A2,Ba] 2 0 A3z=AB,

C = A2

From both Algorithms 1 and 2 we obtain [40]:
C A2

(A3B2)?

((AfB1)*A1)? |

(((AoBo)*Ag)? Ao By)?

a102a102a102010102010201020104102

a102a10a201020101020102010201410A9.
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BEJIEZKKA BbPXY EBKUVINIOBUSA AJITOPUTHBM
3A CEKBEHUPAHE

Xacan ['rourocTan

Pe3tome: B ckopomnu pabotu [12]-[31] aBTOpuTE ca nmamM MHOTO
ONTMMHM3HPAHU BEPCUM HA KIACHYECKH IIMPOKO PA3NPOCTPAHEHU
peayii3anyy Ha eBKIIUIOBUS aNTOpUTHM. TYK 1€ MPeACTaBUM HOBA MO-0bp3a
BEpCUsS Ha EBKIMJOBHUS anropuThMm 3a cekBeHupane (ESA) [40], koiito
aITOPUTHM € JIOKa3aH KaTO ONTHUMAJIEH 3a THPCEHE HA JIBOMYHU IUKIHU C

MHUHUMAaJIHA BapuaTUBHOCT B [40].
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