
Юбилейна международна научна конференция „Компютърни технологии и

приложения“, 15-17 септември 2021 г., Пампорово, България

87

Anniversary International Scientific Conference “Computer Technologies and

Applications”, 15-17 September 2021, Pamporovo, Bulgaria

PROGRAMMING WITH F# LANGUAGE

FOR BUSINESS INTELLIGENCE

Veselina Naneva1

1 Faculty of Mathematics and Informatics,

University of Plovdiv “Paisii Hilendarski”, Plovdiv, 236 Bulgaria Blvd.

Email: vnaneva@uni-plovdiv.bg

Abstract. Business Intelligence refers to the process of collecting, storing,

analyzing and visualizing data, produced by a certain company’s activities.

There is a defined five-level architecture, which includes all the tools and

methodologies – from the processing of the information to its actual

presentation. Additionally, a variety of programming languages, related to

data science, can be specified, which fully satisfy each Business Intelligence

level requirement. The focus of this paper is on the application of F#

programming in data visualization and what is its impact on the end

interactive report.

Key Words: Business Intelligence, BI architecture, functional languages.

Introduction

In the era of digitalization, each business produces a large amount of

information, which needs to be stored and transformed in order both the quality

of the product and the service offered to be improved. This in turn requires a well

systemized process of data visualization to be followed. The sphere that provides

a huge impact on manipulation of the data is Business Intelligence (BI). Plenty of

methodologies and software applications satisfy such kinds of BI requirements

but their practical usage depends on the size, type or processing level of the data.

Due to the fact that each data-driven business has its own structure, firstly the

characteristics of this BI architecture need to be determined by the help of

specified individual stages. In this case, the general concept of it can be divided

into three main ones – transforming, storing and visualizing [1].

mailto:vnaneva@uni-plovdiv.bg

Programming with F# Language in Business Intelligence

88

The aim of transforming level (TL) is to provide systematized data even if

the collecting sources are different. Taking into account what exactly is the

business scale, we can expect that the information will be extracted in a structured,

semi-structured or instructed way. On the other hand, the corresponding result

may depend on the fact what software solutions are implemented and what are

their capabilities with respect to the tools for data extraction. For instance, some

companies count on hybrid data entering, i.e., simultaneously managing some

software products and storing information into local files. In addition, processing

steps should be followed to prepare data for the next actions. As an end product

from the transforming level, we should be able to have fully structured data with

divided information into logical tables. This in fact means that TL is closely

related to providing relational databases with formed data type and cardinality. In

this segment of BI, a combination of cloud-based solutions and local technologies

for data manipulation can be used.

After recalculations and data transformation, the ready DB tables can be

moved to an appropriate storage with regard to their size and complexity.

Additionally, one of the most common requirements related to BI is data to have

as much dynamic as possible. Therefore, an implementation of a cloud-based

storage solution is meaningful in every case. Moreover, there are plenty of tools

and pre-defined strategies so that the subsequent data loading is consistently on

time.

When the business data has been processed, i.e. transformed and load levels

have been applied, the next step covers the data visualization. Following

commonly used BI principals, in this stage we should specify what kind of

business-related questions need to be answered and what is the best way to be

presented. As an example, it could be given a bar and column chart. This type of

visualization is well known in most BI tools since it is suitable for organizing

specific values across different categories.

Although in each mentioned stage many well-known software tools or

environments can be used, it is possible that an application of a personalized

solution could become obligatory to a successful data analyzation. This additional

feature could be related to data science, i.e., by the help of different programming

languages to define algorithms for optimized source transformation or to

implement a custom visualization in the BI interactive tool.

The end product of every BI process flow is a dynamic report. Regardless

of the type of the development, such kind of systemized information is a base tool

for data analyzation. The necessity of quality decision making requires the ready

dashboard to be accessible not only for the developer, but also the different

company levels. Additionally, it should contain a well-structured business story,

which needs to satisfy the client requirements and to provide interactions between

the data, the time and the user.

V. Naneva

89

Tools and Technologies in BI

To be more precise in describing the importance of customization in the BI

end products, it is necessary to define what is the actual impact on it with regard

to the most used program languages and tools.

As a first example of data science language, closely related to statistical

computing and providing environments for graphical visualization, it could be

considered R language. It provides a variety of techniques including linear and

nonlinear modeling, time-series analysis and machine learning algorithms

solutions.

Additionally, Python is a language which can be used in a combination with

R or independently for data science and data visualization. Surely, there are

several libraries with specific purposes, which can allow the access to different

features such as NumPy – a fundamental Python package, used generally for

scientific computing, and Matplotlib – library suitable for creating graphs and

visual representation of the data.

The most common data science technology is JavaScript. Along this line of

assumption, its library named D3 could be pointed out as a tool for not only

creating custom solutions, but also it provides a variety of ready visual elements.

Of course, there are many other JS libraries, which are closely related to data

manipulation such as TableTop, which is intended for parsing of CSV data and

jStat which is suitable for statistical data analysis. Because this technology is well

known as web-driven, it is easy to create content and run it live into any browser

platform.

Based on the necessity of a user-friendly end product of BI processing and

visualization, there are several BI software products created such as Tableau and

Power BI. They may provide similar features, but differ in the report creation

sequence. For instance, Power BI is a complex environment for data

transformation on a structured level and its presentation by the help of handy

visual elements. Its core strength is based on the powerful combination of Data

expression language (DAX) and M Language for data preparation. The platform

is accessible by Desktop, Mobile and Service versions.

On the other hand, Tableau requires all of the features to be divided into

working books. The BI tool provides a developing environment and user service

one in order to slit the processing flow. The preparation and processing of data

rely on Multidimensional Expressions (MDX), which is a query language, and on

Basic calculations, Table calculations, and Level of Details expressions with

respect to calculations. Tableau comes along with various access points such as

Tableau Desktop, Tableau Public, Tableau Server, Tableau Online and Tableau

Reader, which provide different features with respect to modification, access and

share of the ready reports.

Programming with F# Language in Business Intelligence

90

Programming with F#

As it was mentioned in the introduction, in some cases additional changes

or development are required in order to create a meaningful BI end product.

Surely, there are a lot of programming languages, which cover more than one BI

aspects at once, but in this paper some of the advantages of F# language will be

emphasized [2].

F# is formed as a functional-first and multi-paradigm programming

language which also is strongly typed. Additionally, it is known as a general

purpose so it is designed for building a variety of solutions. There are several

integrated packages, related to data science that could be used in order to precise

data transformation. FSLab can be pointed out as an example of such a feature [3].

This is the first data science package collection, which provides not only access

to common data formats, but also the implementation of statistical testing, linear

algebra and machine learning processing is available.

Firstly, we may consider the FSharp.Data package [4]. It implements type

providers and tools for parsing CSV, HTML and JSON file format. From the BI

point of view, parsing through different formats is one of the most important data

manipulating steps due to the fact that the information flows could be taken from

various sources. For instance, if we need to process a CSV file, we need to take

into account that usually the first row in the file is related to the header, i.e. the

naming of the columns, and then the actual data records follow. When we want to

process the information and as a result to receive structured data, we need to use

CsvProvider to get the strongly typed view. It can include several parameters such

as location of the CSV file, whether the sample contains the names of the columns

as its first line, column delimiter(s), etc.

Type Weather= CsvProvider<"../data/Weather.csv",
ResolutionFolder=__SOURCE_DIRECTORY__>

Code 1. CsvProvider example

The generated type provides two methods for data loading. The parse

method can be used if we have string values or to load not only row data, but also

an URL result.

If we suggest using a cloud provider with F# in order to improve the

dynamic manipulation of the data, we can do this with Azure Functions in the

Azure Environment. This solution gives an easy way to run small pieces of code

and the created logic could be connected with the storage services of Azure, such

as Azure Blob Storage, Azure File Storage, etc.

Additionally, by the help of this package collection, we can easily

implement some libraries for data visualization such as Plotly.NET and others. To

illustrate this, we will consider some examples of data preparation based on the

FSharp.Stats multipurpose project [5].

V. Naneva

91

open FSharp.Stats

let fromFileWithSep (separator:char) (filePath) =

 seq { let sr = System.IO.File.OpenText(filePath)

 while not sr.EndOfStream do

 let line = sr.ReadLine()

 let w = line.Split separator//[|',';' ';'\t'|]

 yield w }

let lables,data =

 fromFileWithSep ',' (__SOURCE_DIRECTORY__ + "/data/example.csv")

 |> Seq.skip 1

 |> Seq.map (fun arr -> arr.[4], [| float arr.[0]; float arr.[1];
float arr.[2]; float arr.[3]; |])

 |> Seq.toArray

 |> Array.shuffleFisherYates

 |> Array.mapi (fun i (lable,data) -> sprintf "%s_%i" lable i, data)

 |> Array.unzip

Code 2. FSharp.Stats example

If we take a look in Code 2, we can use F# with its package FSharp.Stats to

implement algorithms for clustering. First of all, it defines the delimiters and the

type of file source. After that by predefined methods it specifies the logical

sequences for solving a specific business related problem. By the help of evoking

shuffleFisherYates, it is possible to generate a random permutation of a finite

sequence [6]. It continually determines the next element by randomly drawing it

from the array until there are no elements left. If we want to visualize data for the

business, which is classified by several categories, but there are no unique labels

to be used, it is necessary to proceed the data in such a way.

To combine the data preparation with the actual visualization, it could be

considered the Plotly.NET package, which provides functions for generating and

rendering plotly.js charts in .NET programming languages. The main design

philosophy of Plotly.NET is based on the following visualization flow:

 Initialize a GenericChart object from the data that is required to be

visualized by using the respective Chart.* function, optionally setting

some specific style parameters.

 Further style the chart with fine-grained control such as setting axis titles,

tick intervals, and so on.

 Display (in the browser or as cell result in a notebook) or save the chart,

and respectively export it in a form so that it can be additionally

implemented in an appropriate BI tool.

Programming with F# Language in Business Intelligence

92

To visualize a certain data (recall the example.csv file from Code 2) with

Plotly.NET, it is necessary to be installed in a similar way as all of the packages

in the FsLab collection [7]. Then, it should be followed the flow considered in the

following rows:

open Plotly.NET

let colnames = ["Example 1";"Example 2";" Example 3";" Example 4"]

let colorscaleValue =

 StyleParam.Colorscale.Electric

 let dataChart =

 Chart.Heatmap(data,ColNames=colnames,RowNames=

(lables |> Seq.mapi (fun i s -> sprintf "%s%i" s i
)),Colorscale=colorscaleValue,Showscale=true)

 |> Chart.withMarginSize(Left=250.)

Code 3. Plotly.NET example

Figure 1. Configured visual example

As it could be seen from Figure 1, there is a defined color scheme by the

StyleParam.Colorscale.Electric function, which has an impact on the entire visual

element [8]. Additionally, it uses Heatmap, which is a specialized chart that

operate with colors to represent data values in a table. If we need to run the end

result, different plugins can be installed in the developing environments such as

.NET Interactive Notebook. The visualization could be embedded in the

interactive report by following the specific tool flow for setting the environment

or preparing it for web presentation by low-code dash cloud, provided by Plotly.

Moreover, XPlot is another package of F#, which is powered by the Plotly

chart function collection [9]. The XPlot library can be used interactively from F#

Interactive, but charts can easily be embedded either in F# applications or in

V. Naneva

93

HTML reports. As opposite to the other library, we can visualize not only Plotly

related charts, but also a collection of elements from Google charts and D3.js.

The following example (see Code 4) uses Google Charts library and

visualizes the data by the help of Combo and Line charts. Xplot can be

manipulated by F# language for graphic configuration. Additionally, functions

such as Chart.WithLabels and Chart.WithLegend specify the annotations in the

individual chart series. The cross-platform data visualization package works also

with predefined style layout, which can be referred by operator “|>” and function

Chart.WithLayout.

open XPlot.GoogleCharts

let series = ["bars"; "bars"; "bars"; "lines"]

let inputs = [Example1; Example2; Example3; Example4]

let chart2 =

 inputs

 |> Chart.Combo

 |> Chart.WithOptions

 (Options

(title = "Example",

 series = [| for typ in series

-> Series(typ)

|]))

 |> Chart.WithLabels ["Example1"; " Example2"; " Example3"; "
Example4"]

 |> Chart.WithLegend true

 |> Chart.WithSize (600, 250)

Code 4. Xplot example

Since F# language is functional based, it provides the possibilities to

implement changes not only on data transformation level, but also includes

features for visualization. In addition, it is known as a combination of JavaScript

packages and C# object-oriented programming methods. That is why it is fully

applicable to the BI architecture in each of its stages.

Conclusions

Business Intelligence is usually characterized by simultaneous data

preparation and its dynamical visualization. There are a variety of software tools

and strategies, closely related to all the sub steps that are connected with

transforming, loading and presenting the business data. The focus of this paper is

Programming with F# Language in Business Intelligence

94

on F# language, which is open-source, cross-platform, and interoperable

programming language used for data science and for visualization. Additionally,

some code examples for data transformation are considered as well as two data

visualization packages are suggested.

Acknowledgments

This paper is partially supported by project MU21-FMI-009 of the

Scientific Research Fund of Plovdiv University “Paisii Hilendarski”, Bulgariа.

References

[1] I. Ong, P. Siew, S. Wong, A Five-Layered Business Intelligence

Architecture, Communications of the IBIMA, Vol. 2011, 2011, Article ID

695619, 11 pages, DOI: 10.5171/2011.695619, ISSN: 1943-7765.

[2] T. Petricek, G. Guerra, D. Syme, Types from data: making structured data

first-class citizens in F#, ACM SIGPLAN Notices, 51 (6), 2016, 477–490,

DOI: http://dx.doi.org/10.1145/.

[3] https://fslab.org/packages.html, retrieved on July 2021.

[4] https://github.com/fsprojects/FSharp.Data/, retrieved on August 2021.

[5] https://fslab.org/FSharp.Stats/, retrieved on July 2021.

[6] https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-

shuffle-algorithm/, retrieved on August 2021.

[7] https://plotly.net/, retrieved on July 2021.

[8] https://plotly.com/javascript/colorscales/, retrieved on July 2021.

[9] https://fslab.org/XPlot/, retrieved on July 2021.

https://fslab.org/packages.html
https://github.com/fsprojects/FSharp.Data/
https://fslab.org/FSharp.Stats/
https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-shuffle-algorithm/
https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-shuffle-algorithm/
https://plotly.net/
https://plotly.com/javascript/colorscales/
https://fslab.org/XPlot/

