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Abstract. In this note we study properties of a new modern generalization of 

the inverse Weibull and odd Lomax distribution named odd Lomax-G 

inverse Weibull (OLIW) distribution. More precisely, we prove estimates for 

the “saturation” - 𝑑 about Hausdorff metric. Numerical examples, illustrating 

our results using CAS MATHEMATICA are given.  
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Introduction 

Lifetime distributions are very important in modeling phenomena and 

pandemics also for other fields, such as industry, engineering, reliability, and 

medical research. Many researchers shows that the inverted distributions have a 

great importance due to their applicability in sciences areas such as biological, 

life test problems, medical and others.  

A new superior distribution named odd Lomax-G inverse Weibull (OLIW) 

distribution with four parameters was introduced from Almetwally [1]. This new 

distribution is a combination of inverse Weibull distribution and the odd Lomax-

G family.  

Definition 1. The odd Lomax-G inverse Weibull (OLIW) distribution is 

associated with the cdf given as 
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  𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) =  1 − 𝛽𝛼 (𝛽 + 
𝑒

−(
𝜃
𝑡

)
−𝜆

1−𝑒
−(

𝜃
𝑡

)
−𝜆)

−𝛼

,    𝑡 > 0, 𝛼, 𝛽, 𝜆, 𝜃 > 0. (1) 

Definition 2. The shifted Heaviside step function is defined by 

ℎ𝑡0
(𝑡) =  {

0,            if 𝑡 < 𝑡0  
[0, 1],     if 𝑡 = 𝑡0  
1,             if 𝑡 > 𝑡0  

. 

Definition 3. [2][3] The Hausdorff distance (the H–distance) 𝜌(𝑓, 𝑔) 

between two interval functions 𝑓, 𝑔 on 𝛺 ⊆ ℝ, is the distance between their 

completed graphs 𝐹(𝑓) and 𝐹(𝑔) considered as closed subsets of 𝛺 × ℝ. More 

precisely,  

𝜌(𝑓, 𝑔) = max{ sup
𝐴∈𝐹(𝑓)

inf
𝐵∈𝐹(𝑔)

||𝐴 − 𝐵||, sup
𝐵∈𝐹(𝑔)

inf
𝐴∈𝐹(𝑓)

||𝐴 − 𝐵||}, (2) 

wherein ||. || is any norm in ℝ2, e.g. the maximum norm ||(𝑡, 𝑥)|| =
max {|𝑡|, |𝑥|}; hence the distance between the points 𝐴 = (𝑡𝐴, 𝑥𝐴), 𝐵 = (𝑡𝐵, 𝑥𝐵) 

in ℝ2 is ||𝐴 − 𝐵|| =  max(|𝑡𝐴 − 𝑡𝐵|, |𝑥𝐴 − 𝑥𝐵|).  

In the next lemma, we present one technical result. 

Lemma 1. The following inequality holds  

 𝐹0(t; α, β, λ, θ) ≤ 𝐹(t; α, β, λ, θ) ≤ 𝐹00(t; α, β, λ, θ), 

where  

𝐹0(t; α, β, λ, θ) =  1 − 𝛽𝛼 (𝛽 + 
1 − (

𝜃
𝑡 )

𝜆

(
𝜃
𝑡 )

𝜆
)

−𝛼

   𝑎𝑛𝑑    𝐹00(t; α, β, λ, θ) =  1 − 𝛽𝛼 (𝛽 + 
1

(
𝜃
𝑡 )

𝜆
)

−𝛼

 . 

Proof. The proof follows immediately from the following well know 

inequalities  

 1 − 𝑥 ≤ 𝑒−𝑥 ≤
1

𝑥+1
 

that holds true for every 𝑥 > −1. The desired result is a consequence of the 

following inequalities 

 
1−𝑥

𝑥
≤

𝑒−𝑥

1−𝑒−𝑥
≤

1

𝑥
. 

This completes the proof. 

□ 
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Figure 1. Confidential bounds is a graphical representation of Lemma 1. 

Note that functions 𝐹0 and 𝐹00 can be used as “confidential bounds” for CDF 

function of OLIW distribution. 

 

Figure 1. Confidential bounds  

The OLIW distribution has a lot of versatility and can be used to model 

distorted data, so it is commonly used in fields like biomedical studies, biology, 

reliability, physical engineering, and survival analysis. Also, can be used with 

success in approximating parameterize data in the field of “virus-theory”, 

insurance mathematics and population dynamics. For some modeling and 

approximation problems, see [4-18] and references therein.  

The main purpose of this study is to present some properties of cumulative 

function of OLIW distribution and prove estimate for the “saturation” - 𝑑 about 

Hausdorff metric. The applicability of the model is proved in simulation study to 

“COVID-19 data” of France. 

Main result 

In this section, we investigate the “saturation” - 𝑑 in the Hausdorff sense to 

the horizontal asymptote. For the function 𝐹(t; α, β, λ, θ) defined by (1) we have 

 𝐹(𝑡0; 𝛼, 𝛽, 𝜆, 𝜃) =  
1

2
   with   𝑡0  = 𝜃  log (

1

21/𝛼𝛽−𝛽
+ 1)

−
1

𝜆
  . 

Then the Hausdorff distance 𝑑 between 𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) defined by (1) and 

the Heaviside function ℎ𝑡0
(𝑡) satisfies the following nonlinear equation 

 𝐹(𝑡_0 +  𝑑; 𝛼, 𝛽, 𝜆, 𝜃)  =  1 −  𝑑. (3) 

In the next theorem, we prove upper and lower estimates for the Hausdorff 

approximation 𝑑. 

Theorem 1. Let 
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 𝐴 =  1 +
1

𝜃
  (2−

𝛼+1

𝛼 (2
1

𝛼 − 1)𝛼𝜆 ((2
1

𝛼 − 1) 𝛽 + 1) log (
2

1
𝛼+𝛽−1−1

21/𝛼−1
)

1

𝜆
+1

)  

and 2.1 𝐴 >  𝑒1.05. Then for the Hausdorff distance 𝑑 between shifted Heaviside 

function ℎ𝑡0
(𝑡) and the CDF function of OLIW distribution 𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) defined 

by (1) the following inequalities hold true: 

 𝑑𝑙 =
1

2.1 𝐴
 <  𝑑 <

log(2.1𝐴)

2.1 𝐴
 =  𝑑𝑟 .  

Proof. Let us consider the function  

𝐻(𝑑) = 𝐹(𝑡0 + 𝑑;  𝛼, 𝛽, 𝜆, 𝜃) − 1 +  𝑑.  

It is easy to show that 𝐻′(𝑑)  >  0, so the function 𝐻(𝑑) is increasing. We 

examine the following approximation of 𝐻(𝑑) as we use the function 

 𝐺(𝑑)  =  − 
1

2
+  𝐴 𝑑 .  

Indeed from Taylor expansion, we get 𝐺(𝑑)–  𝐻(𝑑) =  𝑂(𝑑2). This means 

that 𝐺(𝑑) approximates 𝐻(𝑑) with 𝑑 →  0 as 𝑂(𝑑2) (see Figure 2). More over 

𝐺′(𝑑) > 0 and function 𝐺(𝑑) is also increasing. Let the following condition 

2.1𝐴 > 𝑒1.05 holds. Then it is easy to show that 

𝐺(𝑑𝑙) = −
1

2
+ 𝐴

1

2.1𝐴
<  0 and  𝐺(𝑑𝑟) = −

1

2
+ 𝐴

log(2 . 1𝐴)

2.1 𝐴
> −

1

2
+

1.05

2.1
= 0. 

This completes the proof.  

□ 

 

Figure 2. Functions 𝑯(𝒅) and 𝑮(𝒅) 
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In Table 1 we present some computational examples for different values of 

parameters 𝛼, 𝛽, 𝜆 and 𝜃. We use Theorem 1 for computation of values of upper 

and lower estimates 𝑑𝑙 and 𝑑𝑟. Several graphical representations are presented in 

Figure 3 and one can see that the “saturation” is faster. 

Table 1. Bounds for Hausdorff distance 𝒅 computed by Theorem 1 

𝜶 𝜷 𝝀 𝜹 𝒅𝒍 𝒅 computed by (3) 𝒅𝒓 

3.15  0.31 4.63 0.23 0.0206933 0.041398 0.0802475 

8.01  0.31 0.25 1.91 0.0169438 0.068632 0.0690945 

7.25  0.18 2.71 1.13 0.0739097 0.100674 0.192528 

1.52 0.81 0.95 0.07 0.0573896 0.135953 0.164013 

3.71  0.64 1.51 0.35 0.0730497 0.117894 0.191143 

2.89  1.83 2.53 0.47 0.123729 0.168403 0.258552 

 

Figure 3. Approximation of CDF function of OLIW Distribution  

Some applications 

The main motivation of Almetwally [1] to proposes the OLIW distribution, 

a modern generalization of the inverse Weibull and odd Lomax distribution, is for 

modeling of mortality rate for the COVID-19 pandemic of France. In Figure 4 we 

present the results that we obtain with the programming environment CAS 

Mathematica for the analysis of the considered OLIW cumulative distribution 

function. We present an approximation the Heaviside step function and the CDF 

function 𝐹(𝑡; 𝛼, 𝛽, 𝜆, 𝜃) with parameters 𝛼 =  14.95, 𝛽 =  19.3, 𝜆 =  1.53, 

and 𝜃 =  0.09. Namely, we obtain the corresponding values of Hausdorff 

distance 𝑑 =  0.100992, its upper and lower estimates 𝑑𝑙 = 0.0620456 and 

𝑑𝑟 =  0.17248, respectively. Also, we get the graphical visualization of the 

results. Note that in a choice for a model for approximation of cumulative data in 
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a various modeling problems specialists can used upper and lower estimations 

from Theorem 1 as “confidence bounds”.  

 

Figure 4. The model (1) for COVID-19 data (normalized) belong to France 
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