GEOMETRY OVER TWO ARBITRARY ARITHMETIC
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Abstract: We consider quadrate matrices with elements of the first row
members of an arithmetic progression and of the second row members of other
arithmetic progression. We prove the set of these matricesis a group. Then we give
a parameterization of this group and investigate about some invariants of the
corresponding geometry. We find an invariant of any two points and an invariant
of any sixth points. All calculations are made by Maple.
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I ntroduction

We introduce the square real regular matrices of order 2 of the following type:

M Y _(a+d a+2dj

b+e b+2e

We have proved the following

Theoreml. The set of these matricesis a group.

To prove this theorem we establish the following two lemmas:

Lemmal. Theinverse matrix of any regular matrix of type (1) is such matrix.

Lemma2. The product of any two matrices of type (1) is such matrix.

This group we shall denote by G . In the Klein sense it induces a geometry
denoted by T".

Remark 1. The dements of the first row a+d,a+2d are arbitrary two

consecutive elements of an arithmetic progressionrr, (a,d). Same holds for the
elements of the second row-they are elements of an arithmetic progressionri, (b, e) -
All assertions are true if we takeb = kd,e=d, i.e. the elements of the second row
are another consecutive two elements of the progressionrr, (a,d). In this case the
title of the paper must be: Geometry over an arbitrary arithmetic progression.
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Fundamental group of this geometry

Let ustake an arbitrary such matrix

X+2Z X+2z
2 P, =
y+Uu y+2u

If we multiply both matrices (1) and (2) we get the matrix

X+Z X+27Z
(©)) Pﬁ( j

Y+U Y+2U

which e ements are;

X =ax+ dx+ ay + 2dy,
Y = bx+ ex+ by + 2ey,

Z=az+dz+au+ 2du,
U =bz+ez+bu+ 2eu.

(4)

These functions make a fundamental group of the geometry I".

So we consider the transformation: (xy,zu) ->(X)Y,ZU). We want to
investigate some facts of the geometryI".

Remark 2. The transformations (4) are homogeneous linear. So the group G
can be considered as a subgroup of the projective group in the 3- dimensiona

projective space. These transformations can be considered as linear
transformations induced from linear maps in a linear space. So some time we can
speak about points, some time about vectors.

Scalar product

Let us take two vectors take Vv, (X,Y;,2,U,),V, (X, Y,,2,,U,). We define
their scalar product

5) ViV, = XX + V1Y, + 47, +UU,.

For the images of these vectors V,(X,,Y;,Z,,U,),V,(X,,Y,,Z,,U,) under the
transformations (4) we have

© VWV, =X, X, +YY,+22Z,+UU,.
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For the invariance of the scalar product we consider some specia vectors and find
the conditions:

a’+b*+d*+e” +2(ad +be) =1,
a®+b*+4(d*+€°)+4(ad + be) =1,
d’+¢€’ +ad +be=-1,

3(a® +b*) +10(d? + €) +11(ad + be) = 2.

(7)

These equalities are necessary conditions for the invariance of the scalar product
(5). We solve this system using Maple:

solve({an 2+d" 2+e" 2+b" 2+2* a* d+2* b* e=1,

al 2+4* AN 2+4* N 2+b" 2+4* a* d+4* b* e=1,
dh2+eM2+a*d+b*e=-1,

3*at2+10*d"2+10*er 2+3* b 2+11*a* d+11*b*e=2} {a,b,d,€});

All solutions are;

{ d=RootOf(_Z?+e?-2),b=RootOf(5e’-1+6 Ze+2 Z?),e=e,
(RootOf(5e?—~1+6 _Ze+2_Z?) e+ 3) RootOf (_Z?+ e?—2)
a= 5
ec-2
{a=1,b=-2,e=1,d=-1},{a=-1,b=-2,d=1,e=1},
{a=1,b=2,e=-1,d=-1},{a=-1,b=2,d=1,e=-1},

b

{a=RootOf(2_7>-1),b= —g RootOf(_Z2 - 2), e= RootOf(_Z%>-2),d =0}

In the first case we have:
di=/2-¢ pp.= 3¢, 2-¢€? al_:_—3e2+e4/2—e2+6
I- 1 - 2 2 1 . 2 2_e2

or
| d2=—[2-¢? bpo=_ 38, 2-¢? . -3e’+e./2-e*+6
' T2 2 2. /2 ¢
In the fourth case we have
_e? 3e’+e,/2-€*-6
I d3::4/2—62,b3::—§— 2-¢ , a3 = A
' 2 2 2./2-¢?

or
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=] 2_¢&? 2 e
|V.d4'__ Z—GZ,M::_E_ € ,a4::_3e+e 2-e 6
2 2 2 2—62

We calculate directly in all these cases the scalar product is invariant. We
formulate this result as

Theorem 2. Exactly in the cases I, I, Ill, IV the scalar product (5) is
invariant.

We establish a so the following result

Lemma 3. Inthecases|, II, I1l, IV M, isan orthogonal matrix.

Considering the representations |, 1, 111, 1V we see they define some curves.

In the Euclidean space they represent ellipses.

Cross product of three vectors

If are given 4 vectors:
Vl(xp Yis Z1’U1)’V2(X2’ Y214, UZ),V3(X3, Y3 23,U3),V4(X4, Yar 2y U4) we define

x1 yl z1 ul

- X2 y2 72 u2
(X3 y3 2B u3
x4 y4 z4 u4

and
nl:=(-1)"5*Minor(m,4,1);n2:=(-1)*6*Minor (m,4,2);n3:=(-
DHA7*Minor (m,4,3);nd:=(-D)"8*Minor (m,4,4);

nl:=-ylZ2u3+ylu2z3-y2z3ul+y2z1u3-y3z1lu2+y3z22ul
N2:=x12u3-x1u2zZ3+x2z3ul-x2z21u3+x3z1u2-x322ul

N3:=-Xx1y2u3+x1u2y3-x2y3ul+x2ylu3—-x3ylu2+x3y2ul
N4 =x1y2z3-x122y3+x2y3z1 —x2yl1z3+x3ylz2-x3y2Zz1

The vector n(n,,n,,n;,n,) wecall Crossproduct of thefirst 3 vectors.
Notation: n(n;,n,,n,,n,) = CrossProduct(v,,V,,V,) .

For the images
Vl(xle'Z1’U1)'V2(X2'Y2'Zzluz)’vs(nys’23'U3)’V4(x4’Y4’Z4’U4)
of the above vectors we have correspondently

X1 Yl Z1 Ul
M X2 Y2 72 U2
T IX3 Y3 73 U3

X4 Y4 74 U4
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N1:=(-1)5*Minor (M 4,1); N2:=(-1)*6*Minor (M ,4,2); N3:=(-
1) 7*Minor (M,4,3);N4:=(-1)*8*Minor (M ,4,4);

N1:=-Y1Z2U3+Y1U2Z3-Y2Z3U1+Y2Z1U3-Y3Z1U2+Y3Z22U1
N2:=X1Z2U3-X1U27Z3+X2Z3U1-X271U3+X3Z1U2-X372U1
N3:=-X1Y2U3+X1U2Y3-X2Y3U1l+X2Y1U3-X3Y1U2+X3Y2Ul

N4 :=X1Y2Z3-X1Z2Y3+X2Y3Z1-X2Y1Z3+X3Y1Z2-X3Y271
N(N,,N,,N,,N,) = CrossProduct(V,,V,,V,) .

nl+n3 n1+2n3}

i jcess mn:=
L et us define two matrices: [n2+n4 n2+2n4al

N1+ N3 N1+ 2N3
Its determinant is N1 N4 —-n3n2 and MN ::{ }

N2+N4 N2+2N4|°
Its determinant is N1 N4 — N3 N2

We calculate by Maple:
simplify(Deter minant(mN)-Deter minant(M 2)* 3* Deter minant(mn)); O

Thus we have proved the following
Theorem 3.

6) Determinant(mN) = Determinant(M2)* Determinant (mn)

Someinvariants

From the matrix relation

9) P,=M,p,
we get
(10) Det(Pz) = Det(Mz)Det(pz)
or
XU -YZ = (ae—bd)(xu-yz).
We apply thisrelation for the points p, (X, ¥;,Z,U,), P, (X%, ¥,,2,,U,):
XU, -Y,Z =(ae-bd)(xu, —y,z), X,U, -Y,Z, = (ae—bd)(x,u, - y,z,) .
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X1U1 _lel — XU —Yy,4
X2U2 _Yzzz XU, —Y,Z,

We get the relation , which shows that the

expression
XU — Y.z
11 I VY Z,4,), ' Yo,2,,U,)) = ———
A0 (P06 Y2, P Yo 20 0) =
isaninvariant of any points.
The equation (9) hasthe form

(12) NN, — N,N, = (ae— bd)g(n1n4 —n,ny)

Let us consider another four vectors
VS(XS’y5’ZS’US)’VG(X(S’y6126’u6)’v7(x7’y7’z7’u7)’V8(X8’y8128’u8)and|et
m(m m,, m,,m,) = CrosProduct(v;, Vs, V,) .
In the same way as (9) we have
M1M4—M2M3=(ae—bd)3(mlm4—mzmS),
so that
N1N4_N2N3 — nn, —nng
M1M4_M2M3 mm, —m,m;

which shows that the expression

nn, —n,n
mm, —m,m,
isaninvariant of any 6 vectors. Of course some of the second triple can coincide
with some of thefirst triple vectors.

Thus we can formulate the following
Theorem 4. The expressions (11) and (13) areinvariantsin our geometry I" .

(13) 1,0,V Vs, Vg, V) =
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