
ALGORITHMS FOR GENERATING NEAR-RINGS ON
FINITE CYCLIC GROUPS

Angel Golev

Abstract. In the present work are described the algorithms that generate
all near-rings on finite cyclic groups of order 16 to 29.

Keywords: near-ring, finite cyclic group
2010 Mathematics Subject Classification: 16Y30

1. Introduction

J.R.Clay started the study of near-rings whose additive groups are finite
cyclic ones in 1964 [2]. In 1968 all the near-rings on cyclic groups of order up
to 7 were computed [3]. Later all the near-rings on cyclic groups of order 8 [7],
up to 12 [12], up to 13 [9] and up to 15 [1] were computed.

In works [10, 5] calculating the number of all near-rings on Zn, 16≤n≤29 is
announced. In the present work the algorithms that generate these near-rings
are described.

The annotations, used in this paper, are described in [10].
It is known [2] that there exists a bijective correspondence between the

left distributive binary operations ∗ defined on Zn and the nn functions π
mapping Zn into itself. If r∗1 = b defines the function π(r) = b, then according
to [2, Theorem II], the binary operation ∗ is left distributive exactly when, for
any x, y ∈ Zn, the equality

(1) π(x) · π(y) = π(x · π(y))

holds.
According to the above result, obtaining the near-rings on Zn is equivalent

to obtaining functions π such that equation (1) holds.

2. Data Structure

We use the following notation for the near-rings

(2) k) (x0 x1 . . . xn−1) ,

where k is the number of the generated near-ring and xi are the values of the
function π : xi = π(i), i ∈ Zn.

For example, “2) (0 0 0 1)” means the second near-ring on Z4 with values
of the function π: π(0) = π(1) = π(2) = 0, π(3) = 1.

In the developed programs we represent a near-ring by using the function π.
To store values of π we use one-dimensional array of integers pi.

256 Anniversary International Conference REMIA2010

3. Algorithms for generating near-rings on finite cyclic groups

I check the correctness of described algorithms and programs by using a
known number of near-rings on Zn, n ≤ 15. For verification the number of
near-rings on Zn, n > 16 the exact values for Zn where n is prime are used
and the number of non-zero-symmetric near-rings described in [8].

Algorithm 1
The elements of the function π are constructed consequently, by adding

elements in the array pi which meet the Equation (1). If the new element of
π does not meet (1), we go to the previous level. In the calculation of (1), the
right side of equality it can happen that x · π(y) is greater than the number
of the elements found so far. In this case, it is assumed that the new element
fulfills Equation (1).

Function: Equation1(x, y, q)
Input: x, y – indexes of the elements of π, q – index of the last found element;
Operation: checks the Equation (1) for x and y;
Output: 1 – Equation (1) is satisfied; 0 – not.

function Equation1(x, y, q)
t ← (x ∗ pi[y]) mod n
if t ≤ q and ((pi[x] ∗ pi[y]) mod n) 6= pi[t] then

return 0
else

return 1
end if

end function

Function: CheckConditions (q)
Input: q – the index of new element of π;
Operation: checks the Equation (1) for each previous element of π and q
Output: 1 – Equation (1) is satisfied; 0 – not.

function CheckConditions(q)
if Equation1(q, q, q) = 0 then return 0
end if
for p ← 0, q−1 do

if Equation1(p, q, q) = 0 then
return 0

end if
if Equation1(q, p, q) = 0 then

return 0
end if

end for
return 1

end function

10-12 December 2010, Plovdiv, Bulgaria 257

Because not all elements satisfy the Equation (1), the obtained function
π must be checked again that all pairs of elements meet (1).

Here are used some programming techniques to improve the performance
of the program. For example, to calculate a·b = a∗b mod n a two-dimensional
array mod_n with pre-calculated elements of all products of numbers from 0
to n is used: a · b ≡ mod_n[a, b].

This algorithm is much better than generating all possible functions π
and verifying Equation (1). It is used to generate and find the number of all
near-rings on Zn, n≤23. We also use this algorithm to verify the output of the
next algorithms.

The accumulated empiric data from generation of these near-rings is used
to make some hypotheses about the lower bounds of near-rings. Some properties
are found, and are used to obtain the number of all near-rings on finite cyclic
groups for larger n.

Algorithm 2
By definition, for Equation (1) to be fulfilled, the values of the function π

must be a multiplicative subgroup of (Zn, ·).
At the end of the function CheckConditions, if the right side of (1)

is greater than q, we check whether this new value forms a multiplicative
subgroup with previous values of π.

· · ·
Inc(quantity[pi[q]])
for qn ← 0, q−1 do

if quantity[qn] > 0 and quantity[(pi[qn] ∗ pi[q]) mod n] = 0 then
return 0

end if
end for
· · ·
Here we use an array quantity, which contains the number of different

values of the function π.
This algorithm does not improve significantly the performance of the

program, but the idea can be further developed as follows: The functions π can
be generated only from elements of a previously found multiplicative subgroup.

Algorithm 3
In this algorithm we do a complete verification of Equation (1) for the

new elements of the function π. In some cases this may result in inconsistent
addition of new elements to the array pi.

These “inconsistent” elements can not be saved directly into the array pi.
Therefore two new array pi_2 and pi_n are used. In the first we save the value
of the “inconsistent” element, equal to x ·π(y), and in the second array we save
the number of occurrences of that value at this position, because the value can

258 Anniversary International Conference REMIA2010

be produced on adding different elements. An array of pointers pi_ptr to lists
of “inconsistent” elements is used. This helps us to remove these elements more
easily.

Procedure: InsertNode (q, p, value)
Input: q – the index of new element, p – the value of x ·π(y), value – the value
of the left side of (1);
Operation: adds a new element to the list for position q.

procedure InsertNode(q, p, value)
pi_2[p] ← value
Inc(pi_n[p])
node_ptr ← NewNode(p)
pi_ptr[q].ListAdd(node_ptr)

end procedure

Procedure: RemovePList (q)
Input: q – index of element of π;
Operation: removes the list for position q.

procedure RemovePList(q)
if pi_ptr[q] = null then

return
end if
for all node ∈ pi_ptr[q].list do

Dec(pi_n[node.value])
end for
pi_ptr[q].ListRemove
pi_2[q] ← −1

end procedure

For example, for a new element q of the function π with a value pi[q]
it calculates q ∗ π(q), which is equal to t and all q ∗ π(i) = t1i, 0≤i<q and
π(i) ∗ q = t2i, 0≤i<q. For all t, t1i, t2i we check:

a) if they are less than or equal to q, they are compared directly with the
values in the array pi;

b) if they are greater than q, check whether there is a value in pi_2[q]:
b1) if there is no element – add a new element;
b2) if there exists a value at this place:
b21) if the value is not equal to the value of new element – Equation (1)

is not satisfied;
b22) else – add the new element to the list pi_ptr[q] and increase the

element pi_n[q] and Equation (1) holds.
In this way of working, the obtained function π does not need to be checked

again if all pairs of elements meet (1).

10-12 December 2010, Plovdiv, Bulgaria 259

Function: Equation1(x, y, q)
Input: x, y – indexes of the elements of π, q – index of the last found element;
Operation: checks the Equation (1) for x and y;
Output: 1 – Equation (1) is satisfied; 0 – not.

function Equation1(x, y, q)
ls ← (pi[x] ∗ pi[y]) mod n
t ← (x ∗ pi[y]) mod n
if t ≤ q then

if ls 6= pi[t] then
return 0

end if
else

if pi_2[t] 6= −1 and pi_2[t] 6= ls then
return 0

end if
InsertNode(q, t, ls)

end if
return 1

end function

The function CheckConditions does not change.
Practically the execution time of the algorithm is linear to the number of

near-rings on Zn. The number of near-rings grows at least twice compared to
the previous n. The complexity is O(2n).

Using some proven properties to calculate the number of near-
rings on finite cyclic groups of order greater than 24

We cannot use the algorithms described above to generate all near-rings
and to obtain the number of near-rings on Zn, n ≥ 24 when (Zn, ·) has nonzero
nilpotents of second degree, because the number of these near-rings is very large
([10, Theorem 9]) and they can not be generated in real time.

In this case, to calculate the number of near-rings, we do not generate
near-rings described in [10, Theorem 9]. On generating near-rings we skip
entire groups of possible near-rings corresponding to this theorem. After that
the number of these skipped near-rings is calculated. This can be done with
reference to [5, Corrolary 17].

· · ·
if i = nilp[1] and pi[i] = 0 then

nilp_all ← 0
nilp_zero ← 0

260 Anniversary International Conference REMIA2010

for k ← 1, nilp[1]−1 do
if pi[k] = 0 then

inc(nilp_zero)
end if
if Nilpotent(pi[k]) then

inc(nilp_all)
end if

end for
if nilp_zero < nilp[1]−1 and nilp_all = nilp[1]−1 then

Skip the rest of the elements of π
end if

end if
· · ·
In this way we calculate the number of near-rings on Zn, for n equal to 25

and 27.
For example the number of all near-rings on Z25 corrsponding to [10,

Theorem 9] is 520 or 95 367 431 640 625. According to [5, Corrolary 17] we do
not generate near-rings which begin with values for function π:

0, x11, x12, x13, x14, 0;
0, 0, 0, 0, 0, 0, x21, x22, x23, x24, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x31, x32, x33, x34, 0 and
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x41, x42, x43, x44, 0,

where xij ∈ {d1, . . . , dm} and one xik, k=1, 2, 3, 4 at least has nonzero-value; In
this case we generate near-rings corresponding to [10, Theorem 9] which have
values for π:

0, x51, x52, x53, x54

and their number is 54 = 625. For Z25 the program generated 17887556
near-rings and number of all near-rings on Z25 is 17887556 + 520 − 54 =
95367449527556.

Using the algorithms described, we generated and obtained the exact
number of all near-rings on Zn, 16 ≤ n ≤ 29. The results are presented in
Table 1.

The obtained results for Z17,Z19,Z23,Z29 (n is prime) are identical with
the exact values from [6] and the obtained results for non-zero-symmetric near-
rings on Zn, n = 6, 10, 14, 15, 21, 22, 26 (n = p.q, p and q are primes) are
identical with the exact values from [8].

10-12 December 2010, Plovdiv, Bulgaria 261

Zero- Non-zero- Total
symmetric symmetric number

Z16 16 834 653 1 16 834 654
Z17 72 816 1 72 817
Z18 15 032 215 610 684 15 642 899
Z19 286 380 1 286 381
Z20 876 919 109 847 986 766
Z21 1 164 023 304 834 1 468 857
Z22 2 225 545 1 111 088 3 336 633
Z23 4 371 615 1 4 371 616
Z24 15 821 973 2 619 758 18 441 731
Z25 95 367 449 527 555 1 95 367 449 527 556
Z26 34 749 177 17 400 576 52 149 753
Z27 286 174 087 734 1 286 174 087 735
Z28 207 919 830 19 570 310 227 490 140
Z29 273 300 895 1 273 300 896

Table 1. Number of near-rings on Zn, 3 ≤ n ≤ 29.

Number of near-rings Algorithm 1 Algorithm 3
Z15 27 998 0:00 0:00
Z16 16 834 654 1:40 0:28
Z17 72 817 0:01 0:01
Z18 15 642 899 2:50 0:37
Z19 286 381 0:04 0:02
Z20 986 766 0:22 0:06
Z21 1 468 857 0:25 0:11
Z22 3 336 633 0:51 0:22
Z23 4 371 616 1:07 0:30
Z24 18 441 731 34:20 2:05
Z25 95 367 449 527 556 » »
Z26 52 149 753 » 6:03
Z27 286 174 087 735 » »
Z28 227 490 140 » 25:17
Z29 273 300 896 » 35:00

Table 2. Execution time of programs with algorithms 1 and 3
in minutes and seconds. Programs are executed on
CPU: Intel(R) Core(TM)2 Duo P8600 @ 2.40GHz

4. Conclusion

By using new algorithms we computed the numbers of all near-rings on
Zn, 16 ≤ n ≤ 29.

262 Anniversary International Conference REMIA2010

The empiric data accumulated from the generated near-rings allows const-
ructing hypotheses and improve the lower bounds for the number of near-rings
on finite cycling groups in [10, 5].

Acknowledgements

This research has been partially supported by the project of Bulgarian
National Scientific Found from 2010.

References

[1] Aichinger E., F. Binder, J. Ecker, R. Eggetsberger, P. Mayr and C.
Nöbauer. SONATA: Systems Of Nearrings And Their Applications, Pack-
age for the group theory system GAP4. Johanes Kepler University Linz,
Austria, 2008. http://www.algebra.uni-linz.ac.at/sonata/

[2] Clay J. R., The near-rings on a finite cycle group, Amer. Math.Monthly,
71, 1964, 47–50.

[3] Clay J. R., The near-rings on groups of low order, Math. Zeitschr., 104,
1968, 364–371.

[4] Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Prentice-
Hall, 1995.

[5] Golev A. A., A.K. Rahnev, Computing Near-rings on Finite Cyclic Groups
of Order up to 29, Compt. rend. Acad. bulg. Sci. (to appear).

[6] Jacobson R.A., The structure of near-rings on a group of prime order,
Amer. Math. Monthly, 73, 1966, 59–61.

[7] Pilz G., Near-rings, North-Holland, Amst., 23, 1977.
[8] Rakhnev A. K., On near-rings, whose additive groups are finite cyclics,

Compt. rend. Acad. bulg. Sci., 39, No. 5, 1986, 13–14.
[9] Rakhnev A. K., G. A. Daskalov, Construction of near-rings on finite cyclic

groups, Math. and Math. Education, Sunny Beach, Bulgaria, 1985, 280-
288. (in Bulgarian)

[10] Rahnev A. K., A. A. Golev, Computing Near-rings on Finite Cyclic
Groups, Compt. rend. Acad. bulg. Sci., 63, No. 5, 2010, 645–650.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill,
2001.

[12] Yerby R., H. Heatherly, Near-Ring Newsletter, 7, 1984, 14–22.

Angel Golev Faculty of Mathematics and Informatics
University of Plovdiv
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: angelg@uni-plovdiv.bg

