USING PROBLEMSTO INTRODUCE SOME TOOLS
AND TECHNOLOGIESFOR IMPLEMENTATION
OF GRAPHICSAND ANIMATION IN C#

Stefka Aneva

Abstract. This paper is devoted to the learning of event programming by using
Visual C# in specialized training in Informatics in high schools. Some basic tools
and technologies for the implementation of graphics and animation in C# are
discussed. Two example problems are proposed.

Keywords: event-driven programming, Graphical User Interfaglement,
event, event procedure, graphics, animation
2010 Mathematics Subject Classification: 97Q60

1. Introduction

Studying event programming in the specialized tngjrin Informatics in high
schools by an appropriately selected set of legrtasks with different degrees of
complexity allows students to learn basic pringpbnd possibilities of visual
programming and to acquire fundamental technologiesl mechanisms of
implementing programs driven by events with usimfilly graphical user
interface.

During the process of studying the topic "Eventsdni programming in
graphical user interface environment"the followifiiye main themes are
considered [1]: Basic concepts of event programnaing graphical user interface
(GUI); Building blocks of programming language, Galhjects; Interaction with
OS; Link with databases (DB).

2. Main types of problemsfor the module" Event-driven programming
in graphical user interface environment”
The following five types of problems must be dismg in teaching the
module "Event-driven programming in graphical uséerface environment":

1. The first type of problems includes a set of graphuser interface (GUI)
exercises and work with the basic elements thereof.

2. The second type of problems aims at building kndgéeand skills for the
implementation of graphics and animation.

3. The third one is dedicated to work with arrays &Jl@lements and use of
special elements — GUI containers if grouping ofesal elements by
functionality is necessary.

4. The fourth type of problems considers the implemigon of user-friendly
applications for databases linkage.

5. The fifth type of problems includes the creation sthndard Windows
applications containing menus.

396 Anniversary International Conference REMIA2010

3. Problems used to teach knowledge and skillsfor implementing

graphics and animation

The resources of .NET Framework to build graphigsér interfaces are
defined in the namespaces System.Windows.FormSystém.Drawing (Fig. 1).

The System.Windows.Forms namespace classes ansl pypeide tools for
working with windows, dialogs, element
for text input, components selection, ment
toolbars, tables, trees, etc. Tk
System.Windows.Forms.Design namespe
contains classes which maintain tt
configuration of components and define tt
behaviour of Windows Forms control | [msgine | [rex |
during design. The classes and types of =

. g.1
System.Drawing namespace and us
subspaces provide access to the Windows GDI fumtieurfaces for drawing,
working with graphics and image transformationawing geometrical shapes,
working with images, texts and fonts, etc. [2]

The System.Drawing namespace provides a varietyasic classes, such as
surfaces, pencils, brushes, classes for displayinggxt. The
System.Drawing.Imaging namespace provides classesvdrking with images,
classes for writing in different file formats andrfimage resizing. The
System.Drawing.Drawing2D namespace provides clasdes graphics
transformations - blends, matrices and so on. Mste®.Drawing.Text namespace
provides classes for accessing fonts of the grapéiwvironment. The
System.Drawing.Printing namespace provides claggeprinter use and system
dialog boxes for printing.

In the field of Information technology the term fiayation" is used to describe
the process in which static objects get dynamic\asuhlly appealing appearance.
To create a simple animation in a C# applicatitwe, following facilities can be
used:

1. Change the location of the visible element of thdl;G

2. Show and hide elements of the GUI;

3. Create invisible elements of GUI in which in thesid@ mode appropriate
images for the Image property are chosen. Duriagrtiplementation these
properties are copied in the same property of amnotisible element.

4. Use the Windows GDI+ System.Drawing package for l@mgnting
smooth animation of a geometric object.

In each of the cases above it is important to nreasite time. For this
purpose, the .Net component Timer (Stopwatch) eanded. This element has no
visible graphic image on the GUI of an applicatitinis used to raise an event at
user-defined intervals, namely, it has the Intepuaperty, which determines the
time, in milliseconds, before the Tick event is gexted in relation to the last
occurrence of th&ick event (Enabled = True).

System.Windows.Forms

System.Drawing

| Drawing2D | | Printing |

10-12 December 2010, Plovdiv, Bulgaria 397

Task 1. Create a C# application which contains the follaywlements of the
GUI (Fig. 2):

o four optional buttons implementing a selection bé tdesired direction of
movement of an image;

¢ two optional buttons showing the corresponding tomsiof a moving object
(either along the contour or inside the elemertnrtainer);

¢ one Panel element (which plays the role of contafoe the remaining five
elements PictureBox);

o five PictureBox elements. Initially, the four imagshowing the arrows of the
various movement directions are invisible. At at@ertime only one of those
images is visible depending on the chosen movewriesttion by an optional
button.

e one button which starts and stops the movementoimage in a selected
direction.

o Timer (stopwatch).

The following features should be implemented inapplication:

1. In movement mode for an object, the correspondpigpoal button indicating
the direction of movement differs from the othess, its text should be
displayed in a bold style font.

2. The direction of movement can be changed as follows

— by pressing one of the four optional buttons sgttihe direction of
movement;
— by pressing the arrow keys on the keyboard.

3. The moving element can be scaled in execution nbydaressing the keys P
(increase size) and M (decrease size) from thedargh

4. Upon reaching one of the limits of the Panel corggithe image movement
automatically continues clockwise along the contasrthe image (arrow)
indicating the direction of movement is visualizadhe same time.

5. The movement of the image stops when the buttonctwhitarted the
movement is pressed again.

Name the Project - Animation.

© Movement along the contour ine O Movement inside: O Movement alona the contour fine. (%) Mavement inside Stop
Select diection of movement O Select dieetion of movement (%)
© Hove Up © Move Up
© Move Right © Move Right I n

AR | 1t =] (ﬂ
© Mave Dawn (&) Ct)] © Move Down >
O Move Left ’ O Move Left

Design mode Fig. 2 Execution mode

Main objectives:
- Students get acquainted with some of the facilite<C# used to generate
animations;

398 Anniversary International Conference REMIA2010

- To understand the purpoaed get an insight of some of the properties of the
.Net component — Timer discussed in the task;

- To get familiar with the purpose and the speciBe of the Panel element as a
container for other elements of the GUI;

- To understand the need of GUI elements — contafoergrouping in the form
of application which include groups of radio bugoproviding different
functionality;

- To reflect the need to manage the focus of a Géeht;

- To get familiar with the technology of creating aralling standard procedures
in C#.

- To consolidate their knowledge of the use of midtighoice switch operator.
The following solution is proposed:

1) Stage One: Creating the GUI of an application.
2) Stage Two: Setting some properties of GUI elements in a desigde.

Table 1

GUI Elements Name Properties
Form Forml Text="Animation” ; KeyPreview=hue
Timer timerl Tnterval=100
GroupBox groupBoxl Text="Select direction of movement”
GroupBox groupBox2 Text=""
RadioButton MoveUp, MoveRight Text="Move Up™, Text="Move Right”;

MoveDown, MoveLeft | Text=" Move Down” Text=" Move Left”
RadioButton MoveKontur Text="Movement along the contour hne”
RadioButton MoveFill Text="Movement mside”
Button buttonMove Text="Move”
Panel panell
PictureBox PictureBox1 SizeMode=StretchImage: Image—choice of graphic
PictureBox picUp, picRight, Image — choice of graphics

picDown, picLeft

3) Stage Three: Adding source code to the elements.

Since selection of the desired direction of moveniynusing the optional
buttons and by pressing the arrow buttons of tiybdard must be implemented in
the application, the following requirements mustbasidered:

a) When setting the properties of the form in desigode) a TRUE value
should be assigned to the KeyPreview property. Himwvs the form to
handle the keyboard events before transferring therthe focused GUI
element. If the value is False, each keyboard ewdhbe handled first by
the active element.

b) In execution mode, it is necessary to select theimgoobject pictureBox1 as
an active (focused) element whenever you click nneeement from the
interface of the application, for which an Evenbqedure is generated.
Otherwise, by using the arrow buttons of the keythdtawill not be possible
to directly change the direction of movement buvig@tion among the
different elements of the GUI on the form will berformed instead.

v'Implementing the action of the timer.
int posoka;
private void timer2_Tick(object sender, EventArgs e)
{ switch (posoka)
{case 1:

10-12 December 2010, Plovdiv, Bulgaria 399

if (buttonMove.Text == "Stop") MoveUp.Font = new Font(MoveUp.Font, FontStyle.Bold);
if (pictureBox1.Top >= 0) pictureBox1.Location = new Point(pictureBox1.Left, pictureBox1.Top - 1);
else MoveRight.Checked = true; break;
case 2: if (buttonMove.Text == "Stop") MoveRight.Font = new Font(MoveRight.Font, FontStyle.Bold);
if (pictureBox1.Left + pictureBox1.Width <= panel1.Width-2)
pictureBox1.Location = new Point(pictureBox1.Left + 1, pictureBox1.Top);
else MoveDown.Checked = true; break;
case 3:
if (buttonMove.Text == "Stop") MoveDown.Font = new Font(MoveDown.Font, FontStyle.Bold);
if (pictureBox1.Top + pictureBox1.Height < panel1.Height)
pictureBox1.Location = new Point(pictureBox1.Left , pictureBox1.Top+1);
else MoveLeft.Checked = true; break;
case 4
if (buttonMove.Text == "Stop") MoveLeft.Font = new Font(MoveLeft.Font, FontStyle.Bold);
if (pictureBox1.Left >=0) pictureBox1.Location = new Point(pictureBox1.Left - 1, pictureBox1.Top);
else MoveUp.Checked = true; break; }
if ((pictureBox1.Left == 0)||(pictureBox1.Top == 0)
|| (pictureBox1.Left + pictureBox1.Width >= panel1.Width-1)
|| (pictureBox1.Top + pictureBox1.Height >= panel1.Height))
{ MoveKontur.ForeColor = Color.Blue; MoveFill.ForeColor = Color.Black; MoveKontur.Checked = true; }
else
if ((pictureBox1.Left > 0) && (pictureBox1.Top > 0)
&& (pictureBox1.Left + pictureBox1.Width < panel1.Width)
&& (pictureBox1.Top + pictureBox1.Height < panel1.Height))
{ MoveKontur.ForeColor = Color.Black; MoveFill.ForeColor = Color.Blue; MoveFill.Checked = true; } }
v Implementing the event proceduferml_L oad for initial initialization.
private void Form1_Load(object sender, EventArgs €)
{ pictureBox1.Left = panel1.Width / 2 - pictureBox1.Width / 2;
pictureBox1.Top = panel1.Height / 2 - pictureBox1.Height / 2;
picUp.Left = panel1.Width / 2 - picUp.Width / 2; picUp.Top = 0;
picRight.Left = panel1.Width - picUp.Width; picRight. Top = panel1.Height / 2 - picUp.Height/2;
picDown.Left = panel1.Width / 2 - picDown.Width / 2; picDown.Top = panel1.Height - picDown.Height;
picLeft.Left = 0; picLeft. Top = panel1.Height / 2 - picLeft.Height / 2;
MoveUp.Checked = true; MoveFill.Checked = true; groupBox1.Focus();}
v" Implementing the standard procedubeston_clearbold andhide_picarrow.
void button_clearbold()
{ MoveUp.Font = new Font(MoveUp.Font, FontStyle.Regular);
MoveRight.Font = new Font(MoveRight.Font, FontStyle.Regular);
MoveDown.Font = new Font(MoveDown.Font, FontStyle.Regular);
MoveLeft.Font = new Font(MoveLeft.Font, FontStyle.Regular);}
void hide_picarrow() {picUp.Visible = false;picRight.Visible = false;picDown.Visible = false;picLeft.Visible = false;}
v" Implementing the action of the optional buttongisgtthe direction of movement.
private void Up_CheckedChanged(object sender, EventArgs e)
{ posoka = 1; pictureBox1.Focus(); hide_picarrow(); picUp.Visible = true;
if (timer2.Enabled == true) { button_clearbold(); MoveUp.Font = new Font(MoveUp.Font, FontStyle.Bold); }}
private void Right_CheckedChanged(object sender, EventArgs e)
{posoka = 2; pictureBox1.Focus(); hide_picarrow();picRight.Visible = true;
if (timer2.Enabled == true) { button_clearbold(); MoveRight.Font = new Font(MoveRight.Font, FontStyle.Bold);}}
private void Down_CheckedChanged(object sender, EventArgs e)
{posoka = 3; pictureBox1.Focus(); hide_picarrow(); picDown.Visible = true;
if (timer2.Enabled == true) {button_clearbold(); MoveDown.Font = new Font(MoveDown.Font, FontStyle.Bold);}}
private void Left_CheckedChanged(object sender, EventArgs e)
{ posoka = 4; pictureBox1.Focus(); hide_picarrow(); picLeft.Visible = true;
if (timer2.Enabled == true) { button_clearbold(); MoveLeft.Font = new Font(MoveLeft.Font, FontStyle.Bold);}}

400 Anniversary International Conference REMIA2010

v" Implementing the action of the buttbottonM ove.
private void buttonMove_Click(object sender, EventArgs e)
{ pictureBox1.Focus(); if (buttonMove.Text == "Move") { timer2.Enabled = true; buttonMove.Text = "Stop"; }
else if (buttonMove.Text == "Stop") { timer2.Enabled = false; buttonMove.Text = "Move"; button_clearbold();} }
v" Implementing the action of the event procedeneml_KeyDown.
private void Form1_KeyDown(object sender, KeyEventArgs e)
{if (e.KeyCode == Keys.Up) { MoveUp.Checked = true; pictureBox1.Focus(); }
if (e.KeyCode == Keys.Right) { MoveRight.Checked = true; pictureBox1.Focus(); }
if (e.KeyCode == Keys.Down) { MoveDown.Checked = true; pictureBox1.Focus(); }
if (e.KeyCode == Keys.Left) { MoveLeft.Checked = true; pictureBox1.Focus(); }
if (e.KeyCode == Keys.P)
{ pictureBox1.Size = new Size(pictureBox1.Width + 10, pictureBox1.Height + 10); pictureBox1.Focus(); }
if (e.KeyCode == Keys.M)
{ pictureBox1.Size = new Size(pictureBox1.Width - 10, pictureBox1.Height - 10); pictureBox1.Focus(); } }
v" Implementing the action of the radio buttons shaytime position of a moving element
in the container.
private void MoveKontur_CheckedChanged(object sender, EventArgs e) { pictureBox1.Focus(); }
private void MoveFill_CheckedChanged(object sender, EventArgs e) { pictureBox1.Focus(); }

Task 2. Create a C# application which contains the follawi@UI elements
(Fig.3):

o five optional buttons implementing a selection loé desired geometric shape

or image for drawing;

¢ a checkbox, which sets whether the geometric sivdpke filled in or not;

¢ one PictureBox element and three command buttons.

e Timer and three colorDialog components for colalestion.

The following features should be implemented inapplication:

1. Upon reaching one of the boundaries of the Pictaxentainer, the moving
image’s motion must automatically continue in tippasite direction.

2. The change of the fill colour and the pen colouthaf geometric shape which
is selected for drawing, as well as the text cqlalrould be performed
through the three comman EEEEEEFEEIENEE
buttons.

Name the project - Graphic.
M ain objectives: © Elee

- The students become familid “™*
with some mechanisms fo
graphicsrealization in C# and
they acquire the following
main skills: working with
some basic methods fo Fig. 3
drawing graphic objects;
brushes setup, pencils for drawing, work with textd fonts;

- To know the purpose and specific use of the elefetiireBox as a container;

- To deepen their knowledge and skills for the immatmg animation and the
use of the Timer element;

- To understand the purpose and to get an insighbo of the properties of the
discussed in the task colorDialog component.

" " —

O Triangle

O Pie

O Image

Change the

Change the | | Change the
Tl color text color pen color

10-12 December 2010, Plovdiv, Bulgaria 401

The following solution is proposed:

1) Stage One: Creating the GUI of an application.

In this problem we shall use tictureBox element as a container, since it
does not draw anything in its Paint method, whikdlled before each redraliv.
Panel or any other element is used, a flicker aplpear.

2) Stage Two: Setting some properties of GUI elements in a desigde.

Table2
GUI Elements Name Properties
Form Forml Text="Animation of graphical objects™
Tumer timerl
RadioButton radioButtonl, radioButton2 Text="Ellipse”™; Text="Rectangle”
radioButton3, radioButtond Text="Triangle™; Text="Pie”
radioButtons Text="Image”
PictuwreBox picDraw
CheckBox checkBox_Fill Text="Fill Object”
Button button_changeFillColor Text="Change the fill color™
Button button_changeTextColor Text="Change the text color™
Button button_changePenColor Text="Change the pen color”
colotDialog colorDialogl, coloxDialog2
colorDialog3

3) Stage Three: Adding source code to the elements.
intt X=0;intt_Y =0;ints=1;intw_X=140;int h_Y = 70; int p =1; Boolean p_Fill;
Brush G_brush = new SolidBrush(Color.LightYellow); Pen G_pen = new Pen(Color.Red,3);
Brush G_text = new SolidBrush(Color.Blue); Font font = new Font("Arial", 12, FontStyle.Bold);
Image Image = Image.FromFile("d:/pic.jpg");
v" Implementing the action of the timer.
private void timer1_Tick(object sender, EventArgs e)
{t X=t X+s; Y=t Y+s;
if (X <=0) ||(t_Y <= 0)||(t_X + w_X >= picDraw.Width -5)||(t_Y + h_Y >= picDraw.Height -5)) {s = -s;}
picDraw.Refresh(); }
v" Implementing the action of the event procedpiedraw_Paint.
private void picDraw_Paint(object sender, PaintEventArgs €)
{Graphics g = e.Graphics; g.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.AntiAlias;
switch (p)
{case 1:
g.DrawEllipse(G_pen, t_X, t_Y, w_X, h_Y); if (p_Fill == true) g.FillEllipse(G_brush, t_X, t_Y, w_X, h_Y);
g.DrawString("Ellipse", font, G_text, t_X + 45, t_Y + 25); break;
case 2:
g.DrawRectangle(G_pen, t_X, t_Y, w_X, h_Y);
if (p_Fill == true) g.FillRectangle(G_brush, t_X, t_Y, w_X, h_Y);
g.DrawString("Rectangle", font, G_text, t_X + 28, t_Y + 25); break;
case 3:
Point point1 = new Point(t_X + w_X/ 2, t_Y); Point point2 = new Point(t_X, t_Y + h_Y);
Point point3 = new Point(t_X + w_X, t_Y + h_Y); Point[] curvePoints = { point1, point2, point3 };
g.DrawPolygon(G_pen, curvePoints); if (p_Fill == true) g.FillPolygon(G_brush, curvePoints);
g.DrawString("Triangle", font, G_text, t_X + 36, t_Y + 50); break;
case 4:
Rectangle rect = new Rectangle(t_X, t_Y, w_X/2, w_X/ 2);
float startAngle = 0.0F; float sweepAngle = 360.0F; g.DrawPie(G_pen, rect, startAngle, sweepAngle);
if (p_Fill == true) g.FillPie(G_brush, rect, startAngle, sweepAngle);
g.DrawString("Pie", font, G_text, t_X + 22, t_Y + 25); break;
case 5: g.Drawlmage(lmage, t_X, t_Y); g.DrawString("Image", font, G_text, t_X+30, t_Y + h_Y/2); break;}}
v" Implementing the action of the radio buttons fdeston of the drawing object.
private void radioButton1_CheckedChanged(object sender, EventArgs e) {p=1; w_X=140;h_Y =70;}
private void radioButton2_CheckedChanged(object sender, EventArgs e) {p=2; w_X=140;h_Y =70;}

402 Anniversary International Conference REMIA2010

private void radioButton3_CheckedChanged(object sender, EventArgs e)
private void radioButton4_CheckedChanged(object sender, EventArgs e)
private void radioButton5_CheckedChanged(object sender, EventArgs e)
{p=5; w_X=Image.Width; h_Y = Image.Height;}
v" Implementing the action of the buttons for selactid the fill colour, text colour and
pen colour.
private void button_changeFillColor_Click(object sender, EventArgs e)
{ if (colorDialog1.ShowDialog() == DialogResult.OK)
{ G_brush.Dispose(); G_brush = new SolidBrush(colorDialog1.Color);}}
private void button_changeTextColor_Click(object sender, EventArgs e)
{ if (colorDialog2.ShowDialog() == DialogResult.OK)
{ G_text.Dispose(); G_text = new SolidBrush(colorDialog2.Color); }}
private void button_changePenColor_Click(object sender, EventArgs e)
{ if (colorDialog3.ShowDialog() == DialogResult.OK)
{ G_pen.Dispose(); G_pen = new Pen(colorDialog3.Color,3); }}
v"Implementing the action of the checkbox, which seisther the geometric object will
be filled in or not.
private void checkBox_Fill_CheckedChanged(object sender, EventArgs e)
{ if (checkBox_Fill.CheckState == CheckState.Checked) p_Fill = true; else p_Fill = false;}
private void Form1_Load(object sender, EventArgs e) { checkBox_Fill.Checked = true;}

4. Conclusion
The aims of this stage are as follows:

— the skills for proper selection of suitable elenseot the GUI in accordance with the
required functionality [3,4] of the GUI applicatiahould be further developed;

— the main mechanisms and technologies for the impigation of animation should be
refined,;

— the purpose of the Timer component should be dedrits use when implementing
animation of a GUI element or a graphic objectia torm of application must be well
understood;

— the basic functions of GDI+ on Windows, accessibla the System.Drawing
namespace should be acquired, as well as the baeticods for drawing graphic
objects, namely line, ellipse, rectangle, polygourve, etc.; work with images, text
and fonts;

— the need for GUI container elements should be welerstood;

— abilities to create and call standard proceduré&&#impplications should exist.

References

[1] MOMN, Directorate "Politics in general educatior8yllabus part Ill for basic and
specialized training £X, X, XI andXII class. Sofia, 2003.

[2] S. Nakov, et al. Programming for .Net Frameworklwite 2, Bars, 2007.

[3] N. Valchanov, T. Terzieva, V. Shkurtov, A. lliev. rdhitecture of extensible
computations driven systems. Proceedings of thayFhinth Spring Conference of the
Union of Bulgarian Mathematicians, Albena, Aprill6; 2010, 207-211.

[4] N. Valchanov, T. Terzieva, \Shkurtov, A. lliev. Approaches in Building and
Supporting Business Information Systems. Proceadifidnternational Conference on
Information Technology in Business Management, ¥afdct. 16-17, 2009, 100-105.

Stefka Yordanova Aneva
Faculty of Mathematics and Informatics, UniversifyPlovdiv “Paisii Hilendarski”
236 Bulgaria Blvd., 4003 Plovdiv, Bulgarigmail: stfaneva@uni-plovdiv.bg

