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Abstract. The well-known Banach contraction principle has a plethora

of generalizations. In this paper we have focused our attention on three
of them: best proximity pairs of a noncyclic map in a complete metric

space with the UC property, the contraction condition holding for some

elements in a space with a relation introduced in it, formalized by a P set,
and the mapping being with a contractive iterate at a point. We prove a

theorem combining these three generalizations, providing sufficient condi-

tions for the existence and uniqueness of best proximity pairs of noncyclic
mappings with a contractive iterate on P sets. The paper concludes with
an illustrative example.

1. Introduction

Ever since the introduction of the Banach contraction principle, the theory of
fixed points has been ubiquitous in both theoretical and applied mathematics.
It has been used in the solution of a plethora of problems even in its unmodified
form. Such results have warranted the generalization of the Banach contraction
principle in a multitude of ways.

One way to weaken the principle is to look for a closest element in some
sense, instead of a fixed point [3]. If we have a mapping T : A ∪ B → A ∪ B
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such that T : A → B and T : B → A and A ∩ B = ∅, then clearly there
would not exist an element x ∈ A ∪ B such that Tx = x. Then we can seek
an element that is a best proximity point. Seeing as such objects are usually
discussed in Banach spaces, a best proximity point would be a point that
satisfies the optimization problem minx∈A∪B ∥Tx − x∥. This concept has not
only flourished in a theoretical environment but also has found applications,
some being in game theory [15] and differential equations [16]. An offspring of
this idea is the concept of a best proximity pair when the mapping is such that
T : A → A and T : B → B [6].

A generalization that has been initiated by [25], but having received recog-
nition after the publication of [20], is the introduction of a partial ordering to
the metric space X and the restriction of the contractive condition to only a
subset of comparable elements. There are a multitude of results in partially
ordered metric spaces [1, 20]. Later such notions have been generalized by re-
placing the partial ordering with a general relation between the elements in X,
represented by a P set [17].

A way to relax the contractive condition is introduced in [21], where the
methodology is to allow for the contractive condition to hold for some iteration
of the mapping Tn(x) that depends on the specific element x ∈ X, instead of
for every iteration.

Recently, a result combining all three of these results has been proven [8],
looking at the case where n(x) is an odd natural number. The goal of this
paper is to continue research into unifying these ideas, focusing on mappings
that can lead to best proximity pairs.

2. Preliminaries

In this paper, we use the following notation: R for the set of real numbers,
N for the set of the naturals (N = {1, 2, 3, . . . }), N0 for N ∪ {0}, C for the set
of complex numbers, Z for the set of the integers, ⌊·⌋ for the floor function
(⌊·⌋ : R → Z, as ⌊r⌋ = max{n ∈ Z : n ≤ r}), (X, ρ) for the metric space X,
with metric ρ, B[x, r] for the closed ball in the metric space (X, ρ), with center
x ∈ X, and radius r ≥ 0 (that is, B[x, r] = {u ∈ X : ρ(u, x) ≤ r}), and B(x, r)
for the open ball in the metric space (X, ρ), with center x ∈ X, and radius
r ≥ 0 (B(x, r) = {u ∈ X : ρ(u, x) < r}).

The study of best proximity points obtained via a mapping of the form
T : A∪B → A∪B, T : A → B, T : B → A was pioneered in [3]. In that paper,
the authors use the notion of a cyclic contraction map.
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Definition 2.1 ([3]). Let A and B be nonempty subsets of a metric space X.
A map T : A ∪B → A ∪B is a cyclic map if

T (A) ⊂ B and T (B) ⊂ A.

Definition 2.2 ([3]). Let A and B be nonempty subsets of a metric space X,
such that A ∩B = ∅. We say that x ∈ A ∪B is a best proximity point if

d(x, Tx) = dist(A,B).

Definition 2.3 ([3]). Let (X, ρ) be a metric space, A and B be subsets of X.
We say that the map T : A ∪ B → A ∪ B is a cyclic contraction map if it is a
cyclic map and satisfies the inequality

ρ(Tx, Ty) ≤ αρ(x, y) + (1− α)dist(A,B)

for some α ∈ (0, 1) and every x ∈ A, y ∈ B.

For the purposes of getting an existence and uniqueness result, the uniform
convexity of the underlying Banach space is of paramount importance.

Definition 2.4 ([2, 5]). Let (X, ∥ · ∥) be a Banach space. For every ε ∈ (0, 2]
we define the modulus of convexity of ∥ · ∥ by

δ∥·∥(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ∥x− y∥ ≥ ε

}
.

The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space
(X, ∥ · ∥) is then called a uniformly convex Banach space.

Whenever the space under consideration is a Banach space (X, ∥ · ∥), we will
use the metric induced by the norm, i.e., ρ(x, y) = ∥x− y∥.

Theorem 2.5 ([3]). Let A and B be nonempty closed and convex subsets of
a uniformly convex Banach space (X, ∥ · ∥). Suppose T : A ∪ B → A ∪ B is a
cyclic contraction map. Then there exists a unique best proximity point x of T
in A.

However, requiring the Banach space to be uniformly convex is far too re-
stricting. A replacement for the uniform convexity in metric spaces has been
introduced in [24].

Definition 2.6 ([24]). Let (X, ρ) be a metric space and A,B ⊆ X. Let for
any three sequences {xn}∞n=1, {zn}∞n=1 ⊆ A, {yn}∞n=1 ⊆ B, so that

• lim
n→∞

ρ(xn, yn) = dist(A,B),

• lim
n→∞

ρ(zn, yn) = dist(A,B).
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there hold lim
n→∞

ρ(xn, zn) = 0. Then, we say that the ordered pair (A,B)

satisfies the property UC.

Theorem 2.7 ([24]). Let A and B be nonempty closed subsets of a complete
metric space (X, ρ), such that the ordered pairs (A,B) satisfy the property UC.
Let T : A ∪ B → A ∪ B be a cyclic map and there exist k ∈ [0, 1), so that the
inequality

ρ(Tx, Ty) ≤ kmax{ρ(x, y), ρ(x, Tx), ρ(y, Ty)}+ (1− k)dist(A,B)

holds for all x ∈ A and y ∈ B.
Then there is a unique best proximity point x of T in A, the sequence of

successive iterations {T 2nx0}∞n=1 converges to x for any initial guess x0 ∈ A.
There is at least one best proximity point y ∈ B of T in B. Moreover, the
best proximity point y ∈ B of T in B is unique, provided that the ordered pair
(B,A) has the UC property.

Since [24], different concepts have been considered in order to substitute
the uniform convexity [10, 22, 23, 24]. In particular, observations made in
[12, 13, 27] lead to the obtaining of results for fixed and best proximity points
in (R, | · |).
Corollary 2.8 ([12, 13, 27]). Let A and B be real intervals. Then the ordered
pair (A,B) satisfies the property UC.

Lemma 2.9 ([4]). Let A,B ⊆ X, where (X, ρ) is a metric space, and the
ordered pair (A,B) satisfies the property UC. Then, for every ε > 0 there is
δ > 0 so that diam(A ∩B[y,dist(A,B) + δ]) ≤ ε for any y ∈ B.

Further connections between these concepts have been established in [26].
One of the first results about fixed points in partially ordered metric spaces,

presented in a more sophisticated context, can be found in [25]. However, only
after the publication of [20] was interest by the scientific community piqued. In
that paper, the contractive condition ρ(Tx, Ty) ≤ kρ(x, y) is modified in such
a way as to be valid only for x ≼ y.

Theorem 2.10 ([20]). Let (X, d,≼) be a partially ordered complete metric
space and f : X → X be a continuous, monotone (i.e., either order preserving
or order reversing) map, such that there is k ∈ [0, 1) so that the inequality

d(Tx, Ty) ≤ kd(x, y)

holds true for arbitrary x, y ∈ X, satisfying x ≽ y. A fixed point ξ ∈ X of T
exists if there is x0 ∈ X such that either x0 ≼ fx0 or x0 ≽ fx0.

The fixed point ξ will be unique if each pair of elements x, y ∈ X possesses
a lower bound or an upper bound.
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Introducing a partial order and restricting the contractive condition to com-
parable elements in some manner has been generalized by the introduction of P
sets (P ⊂ X ×X) in [17]. In a short amount of time, a series of articles focuses
on coupled fixed points, where P sets are subsets of X4 [17, 18, 19]. Further
research into these ideas has been conducted in [7, 9].

An especially important concept for proving such results is stated in the
following definition.

Definition 2.11 ([19]). Let (X, d) be a metric space, P ⊂ X×X and F : X →
X be a mapping. P is called F -closed if

(x, y) ∈ P ⇒ (F (x), F (y)) ∈ P.

We will present some well-known examples [17].

Example 2.12. Let (X, d,≼) be a partially ordered metric space. Let F :
X → X be an increasing function, i.e., F (x) ≼ F (y), provided that x ≼ y.
Then the set P = {(x, y) ∈ X ×X : x ≼ y} is F -closed.

Example 2.13. Let (X, d,≼) be a partially ordered metric space. For F :
X → X let F (x) be comparable with F (y), i.e., F (x) ≍ F (y). Then the set
P = {(x, y) ∈ X ×X : x ≍ y} is F -closed.

In [21] we observe a different relaxation of the Banach contraction principle.

Theorem 2.14 ([21]). Let X be a Banach space, and T : X → X a continuous
mapping satisfying the condition: there exists a constant α ∈ (0, 1) such that
for each x ∈ X, there is a positive integer n(x) such that for all y ∈ X

ρ(Tn(x)y, Tn(x)x) ≤ αρ(y, x).

Then T has a unique fixed point z and lim
s→∞

T sx = z for each x ∈ X.

Later, the maps introduced in [21] have been named maps iterated at a
point. Further developments of this idea have been presented in [8, 9, 11, 14].

All of these ideas have been unified in [8].

Definition 2.15 ([17]). Let (X, d) be a metric space. We say that two se-
quences {xn}, {yn} ⊂ X are Cauchy equivalent if limn→∞ d(xn, yn) = 0.

Definition 2.16 ([8]). Let (X, d) be a metric space, A,B ⊂ X and P ⊂ A×B,
A∩B = ∅. Let {xn}∞n=0 be a sequence such that x2n ∈ A and x2n+1 ∈ B. The
triple (A ∪B, d,P) is said to be:

• cyclically e-P-regular if for any sequence {x2n}, convergent to x∗, such
that (x2n, x2n+1) ∈ P for all n ∈ N, there holds (x∗, x2n+1) ∈ P for all
n ∈ N ∪ {0}
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• cyclically o-P-regular if for any sequence {x2n+1}, convergent to x∗,
such that (x2n, x2n+1) ∈ P for all n ∈ N, there holds (x2n, x

∗) ∈ P, for
all n ∈ N ∪ {0}.

Definition 2.17 ([8]). Let X be a non-empty set, A,B ⊂ X, P ⊂ A×B and
let T : A ∪B → A ∪B be a cyclic map. We say that P is cyclically T-closed if

(x, y) ∈ P ⇒ (Ty, Tx) ∈ P.

Definition 2.18 ([8]). We say that P has the cyclically transitive property if
from (x, y), (z, y), (z, u) ∈ P it follows that (x, u) ∈ P.

Theorem 2.19 ([8]). Let (X, d) be a complete metric space, A,B ⊂ X be
nonempty such that A∩B = ∅, the pair (A,B) have the UC property, P ⊂ A×B,
T : A ∪B → A ∪B be a cyclic map and there hold

(i) P is cyclically T -closed and has the cyclically transitive property;
(ii) the triple (A ∪B, d,P) is cyclically e-P-regular;
(iii) there exists x0 ∈ A such that (x0, Tx0) ∈ P;
(iv) there exists k ∈ [0, 1) such that for all x ∈ A ∪ B there is n(x) ≡ 1

(mod 2) ∈ N, such that for all y ∈ A ∪ B, where (x, y) or (y, x) ∈ P,
we have

d(Tn(x)(x), Tn(x)(y)) ≤ kd(x, y) + (1− k)dist(A,B). (2.1)

Then there exists a best proximity point x∗ in A and for any arbitrarily chosen
x0 ∈ A, such that (x0, Tx0) ∈ P the iterated sequence x2n = T 2nx0 converges
to a best proximity point. Furthermore, x∗ is a fixed point of T 2. Moreover,
there hold

(a) for any x ∈ A such that (x0, Tx) ∈ P or (x, Tx0) ∈ P, the sequences
x2n = T 2nx0 and u2n = T 2nx are Cauchy equivalent and hence u2n

converges to the same point x∗;
(b) if y∗ ∈ A is a best proximity point and either

(x0, Ty
∗) ∈ P or (y∗, Tx0) ∈ P,

or there exists z ∈ A so that

(x0, T z), (y
∗, T z) ∈ P or (z, Tx0), (z, Ty

∗) ∈ P,

then y∗ = x∗;
(c) if additionally we suppose that for every x, y ∈ A such that neither

(x, Ty) ∈ P or (y, Tx) ∈ P there is z ∈ A so that either

(x, Tz), (y, Tz) ∈ P or (z, Tx), (z, Ty) ∈ P,

then x∗ is the unique proximity point.
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A very similar concept to best proximity points is a best proximity pair.

Definition 2.20 ([6]). Let A and B be nonempty subsets of a metric space
X, such that A ∩B = ∅. A mapping T : A ∪B → A ∪B is called noncylcic if

T (A) ⊆ A, T (B) ⊆ B.

Definition 2.21 ([6]). Let A and B be nonempty subsets of a metric space X,
such that A∩B = ∅. We say that (x, y) ∈ (A,B) is a best proximity pair for the
noncyclic mapping T : A∪B → A∪B if Tx = x, Ty = y, d(x, y) = dist(A,B).

It is the aim of this paper to extend the results for mappings with a con-
tractive iterate at a point on P sets by considering such maps in the context of
best proximity pairs.

3. Main Results

Definition 3.1. Let A and B be sets, P ⊆ A×B and T : A ∪B → A ∪B. We
say that P is T -expansive if for every (x, y) ∈ P, n ∈ N0 and m ∈ N0, there
holds (Tnx, Tmy) ∈ P.

Definition 3.2. Let (X, ρ) be a metric space, A and B be subsets of X,
P ⊆ A×B, T : A ∪B → A ∪B be a noncyclic map. Let there exist λ ∈ [0; 1),
such that for every (a, b) ∈ P, there is nA(a) ∈ N, and nB(b) ∈ N, so that

ρ(TnA(a)a, TnA(a)b) ≤ λρ(a, b) + (1− λ)dist(A,B)

and

ρ(TnB(b)a, TnB(b)b) ≤ λρ(a, b) + (1− λ)dist(A,B).

Then, we say that T is a noncyclic map with a contractive iterate on P.

Let us first state a result that addresses the behavior of T on the subset A.

Theorem 3.3. Let (X, ρ) be a complete metric space, A and B be subsets of
X. Let T be a noncyclic map with a contractive iterate on P, P be T -expansive,
and the ordered pair (A,B) satisfy the property UC. Let there exist a ∈ A and
b ∈ B such that (a, b) ∈ P. Then:

(i) The sequence Tna is Cauchy and limn→∞ ρ(Tna, Tnb) = dist(A,B). If
in addition lim

n→∞
Tna = z and (z, b) ∈ P, then Tz = z.

(ii) Additionally, if (c, b) ∈ P, then the sequences Tna and Tnc are Cauchy
equivalent.

(iii) If α ∈ A is such that Tα = α there exists ζ ∈ B such that (a, ζ), (α, ζ) ∈
P, then z = α.
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(iv) If additionally we suppose that for every a1, a2 ∈ A there is ζ ∈ B such
that (a1, ζ), (a2, ζ) ∈ P, then there exists a unique fixed point z of T in
A such that limn→∞ ρ(z, Tnβ) = dist(A,B) for (·, β) ∈ P.

As is shown below, (A,B) having the UC property is paramount for es-
tablishing that Tna is Cauchy. However, the sequence Tnb may not even be
convergent. If we introduce one more condition (mainly, the pair (B,A) having
the UC property), we can prove the following result for best proximity pairs.

Theorem 3.4. Let (X, ρ) be a complete metric space, A and B be subsets of
X. Let T be a noncyclic map with a contractive iterate on P, P be T -expansive,
and the ordered pairs (A,B) and (B,A) satisfy the property UC. Let there
exist a ∈ A and b ∈ B such that (a, b) ∈ P. Then:

(I) The sequences Tna, Tnb are Cauchy. If in addition lim
n→∞

Tna = z and

(z, b) ∈ P, then Tz = z. Similarly, if in addition lim
n→∞

Tnb = w and

(a,w) ∈ P, then Tw = w. If both hold, then (z, w) is a best proximity
pair for T .

(II) Additionally, if (c, b) ∈ P, then the sequences Tna and Tnc are Cauchy
equivalent. Similarly, if (a, d) ∈ P, then the sequences Tnb and Tnd
are Cauchy equivalent.

(III) If we also have another best proximity pair (α, β) and either (z, β) or
(α,w) is in P, or there exists ζ ∈ A ∪ B such that (a, ζ), (α, ζ) ∈ P or
(ζ, b), (ζ, β) ∈ P, then (z, w) = (α, β).

(IV) If additionally we suppose that for every a1, a2 ∈ A, b1, b2 ∈ B there is
ω ∈ A, ζ ∈ B so that (a1, ζ), (a2, ζ) ∈ P and (ω, b1), (ω, b2) ∈ P, then
the best proximity pair is unique.

4. Auxiliary Results

Lemma 4.1. Let (X, ρ) be a metric space, A and B be subsets of X, T :
A∪B → A∪B be a noncyclic map with a contractive iterate on P ⊆ A×B, and
P be T -expansive. Then, the sequences {Tna}∞n=0 and {Tnb}∞n=0 are bounded
for every (a, b) ∈ P.

Proof. By assumption, T is a noncyclic map with a contractive iterate on P,
and P is T -expansive. Thus, there is nB(b) ∈ N, such that for every n ≥ nB(b)
there holds

ρ(Tna, TnB(b)b) ≤ λρ(Tn−nB(b)a, b) + (1− λ)dist(A,B)
≤ λρ(Tn−nB(b)a, TnB(b)b) + (1− λ)dist(A,B)

+λρ(TnB(b)b, b).
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Applying the last inequality, p =

⌊
n

nB(b)

⌋
times consecutively, we get

ρ(Tna, TnB(b)b)
≤ λρ(Tn−nB(b)a, TnB(b)b) + (1− λ)dist(A,B) + λρ(TnB(b)b, b)
≤ λ2ρ(Tn−2nB(b)a, TnB(b)b) + (1− λ2)dist(A,B) + λρ(TnB(b)b, b)

+λ2ρ(TnB(b)b, b)
≤ λ3ρ(Tn−3nB(b)a, TnB(b)b) + (1− λ3)dist(A,B) + λρ(TnB(b)b, b)

+λ2ρ(TnB(b)b, b) + λ3ρ(TnB(b)b, b)
. . .

≤ λpρ(Tn−pnB(b)a, TnB(b)b) + (1− λp)dist(A,B) +

p∑
k=1

λkρ(TnB(b)b, b).

Therefore, for every n ∈ N, the inequality

ρ(Tna, TnB(b)b) ≤ max
0≤k<nB(b)

ρ(T ka, TnB(b)b) + dist(A,B) +
λ

1− λ
ρ(TnB(b)b, b)

is true. Thus, {Tna}∞n=0 is bounded. By a similar argument, we obtain that
{Tnb}∞n=0 is also bounded. □

Lemma 4.2. Let (X, ρ) be a metric space, A,B ⊆ X, T : A ∪ B → A ∪ B
be a noncyclic map with a contractive iterate on P ⊆ A × B, and P be T -
expansive. Let (a, b) ∈ P and the sequences {qan}∞n=0, {qbn}∞n=0 ⊆ N0 be defined

as qa0 = qb0 = 0, qan+1 = qan + nA(T
qana), qbn+1 = qbn + nB(T

qbnb). Then,

(i) lim
n→∞

sup
i≥qbn

ρ(T ia, T qnb b) = dist(A,B).

(ii) lim
n→∞

sup
i≥qan

ρ(T qna a, T ib) = dist(A,B).

(iii) If the ordered pair (A,B) satisfies the property UC, then the sequence
{Tna}∞n=0 is Cauchy.

Proof. Using Lemma 4.1, it follows that sup
n∈N0

ρ(Tna, b) = M < ∞.

By assumption, T is a noncyclic map with a contractive iterate on P and P
is T -expansive. Therefore, for every n ∈ N0 and k ∈ N0, the inequality

ρ(T qbn+ka, T qbnb) ≤ λρ(T qbn−1+ka, T qbn−1b) + (1− λ)dist(A,B)
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is true. Thus, for any n ∈ N0, there holds

sup
i≥qbn

ρ(T ia, T qbnb) ≤ λ sup
i≥qbn−1

ρ(T ia, T qbn−1b) + (1− λ)dist(A,B)

≤ λ2 sup
i≥qbn−2

ρ(T ia, T qbn−2b) + (1− λ2)dist(A,B)

. . .

≤ λn−1 sup
i≥qb1

ρ(T ia, T qb1b) + (1− λn−1)dist(A,B)

≤ λn sup
i≤N0

ρ(T ia, b) + (1− λn)dist(A,B)

≤ λnM + (1− λn)dist(A,B).

(4.1)

By assumption, T (A) ⊆ A, T (B) ⊆ B, a ∈ A, and b ∈ B. Consequently,

sup
i≥qbn

ρ(T ia, T qbnb) ≥ dist(A,B), for each n ∈ N. Using the last inequality and

(4.1), we can observe that

lim
n→∞

sup
i≥qbn

ρ(T ia, T qbnb) = dist(A,B). (4.2)

By similar arguments, we can see that lim
n→∞

sup
i≥qan

ρ(T qana, T ib) = dist(A,B).

If the ordered pair (A,B) satisfies the property UC, from the limit (4.2)
and {Tna}∞n=0 ⊆ A, it follows that for every δ > 0 there is N ∈ N, so that

{Tna}∞
n=qbN

⊆ A ∩B[T qbN b,dist(A,B) + δ], i.e.,

diam({Tna}∞n=qbN
) ≤ diam(A ∩B[T qbN b,dist(A,B) + δ]).

Using the last inequality and Lemma 2.9, we obtain that for every ε there is
N ∈ N, such that diam({Tna}∞

n=qbN
) ≤ ε. Hence, the sequence {Tna}∞n=0 is

Cauchy. □

Lemma 4.3. Let (X, ρ) be a metric space, A,B ⊆ X, T : A∪B → A∪B be a
noncyclic map with a contractive iterate on P ⊆ A× B and P be T -expansive.
Let (a, b) ∈ P. Then, lim

n→∞
ρ(Tna, Tnb) = dist(A,B).

Proof. Let the sequence {qn}∞n=0 ⊆ N0 be defined recursively as q0 = 0,
qn+1 = qn + nA(T

qna).
By Lemma 4.2 (ii) and (iii), it follows that

• For every ε > 0, there is N ∈ N such that if m ≥ N and i ≥ qm, then
dist(A,B)− ε ≤ ρ(T qma, T ib) ≤ dist(A,B) + ε.

• For any ε > 0, there exists N ∈ N so that if m ≥ N and i ≥ qm, then
0 ≤ ρ(T qma, T ia) ≤ ε.
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Therefore, for every ε, there is N ∈ N, such that if m ≥ N and i ≥ qm, it holds
that

dist(A,B)− 2ε ≤ ρ(T qma, T ib)− ρ(T qma, T ia)

≤ ρ(T ia, T ib) ≤ ρ(T qma, T ib) + ρ(T qma, T ia)

≤ dist(A,B) + 2ε.

Thus, lim
n→∞

ρ(Tna, Tnb) = dist(A,B). □

Lemma 4.4. Let (X, ρ) be a complete metric space, A,B ⊆ X, T : A ∪ B →
A ∪ B be a noncyclic map with a contractive iterate on P ⊆ A × B, and P
be T -expansive. Let (a, b), (c, b) ∈ P. Then, the sequences Tna and Tnc are
Cauchy equivalent and lim

n→∞
Tna = lim

n→∞
Tnc = z.

Proof. From Lemma 4.2 (iii) and the assumption that (X, ρ) is complete, we
get

lim
n→∞

Tna = a′ ∈ X and lim
n→∞

Tnc = c′ ∈ X. (4.3)

Let the sequence {qn}∞n=0 ⊆ N0 be defined as q0 = 0, qn+1 = qn+nB(T
qnb).

Then, from Lemma 4.2 (i), we obtain that lim
n→∞

ρ(T qna, T qnb) = dist(A,B) and

lim
n→∞

ρ(T qnc, T qnb) = dist(A,B). Using the last two limits and the assumption

that the ordered pair satisfies the property UC, it follows that

lim
n→∞

ρ(T qna, T qnc) = 0,

that is, the sequences Tna and Tnc are Cauchy equivalent. From (4.3) and the
continuity of the metric, we can conclude that

ρ(a′, c′) = lim
n→∞

ρ(Tna, Tnc) = lim
n→∞

ρ(T qna, T qnc) = 0,

i.e., a′ = c′. □

Lemma 4.5. Let (X, ρ) be a complete metric space, A,B ⊆ X, T : A ∪ B →
A ∪ B be a noncyclic map with a contractive iterate on P ⊆ A × B, and P be
T -expansive. Let (a, b) ∈ P, lim

n→∞
Tna = z, and (z, b) ∈ P. Then Tz = z.

Proof. By Lemma 4.4, the assumption that lim
n→∞

Tna = z and the continuity

of the metric, we obtain

lim
n→∞

ρ(z, Tnb) = dist(A,B). (4.4)

By assumption (z, b) ∈ P, therefore z ∈ A. T is a noncyclic map with a
contractive iterate on P and P is T -expansive. Consequently,

dist(A,B) ≤ ρ(TnA(z)z, TnA(z)+kb) ≤ λ(z, T kb) + (1− λ)dist(A,B)
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for any k ∈ N. From the last inequality and (4.4), we can observe that

lim
n→∞

ρ(TnA(z)z, Tnb) = dist(A,B). By the last limit, (4.4) and the ordered

pair satisfying the property UC, it follows that lim
n→∞

ρ(z, TnA(z)z) = 0. Thus,

z = TnA(z)z.
Let us suppose that Tz = z′ ̸= z. Then T knA(z)+1z = z′ for every k ∈ N0.

Then, the equality

lim
n→∞

Tnz = z (4.5)

does not hold. Using (a, b), (z, b) ∈ P, lim
n→∞

Tna = z and Lemma 4.3, it follows

that lim
n→∞

Tnz = lim
n→∞

Tna = z. The last limit contradicts (4.5). Therefore,

Tz = z. □

5. Proof of the Main Result

5.1. Proof of Theorem 3.3. (i) All of the conditions of Lemma 4.2 are ful-
filled. Therefore, the sequence Tna is Cauchy. From Lemma 4.3 we get that
limn→∞ ρ(Tna, Tnb) = dist(A,B). Additionally, due to (X, ρ) being a complete
metric space, if lim

n→∞
Tna = z and (z, b) ∈ P, then from Lemma 4.5 we get that

Tz = z.
(ii) This immediately follows from Lemma 4.4.
(iii) Let α be such that Tα = α and there exists ζ ∈ B such that the

inclusion (a, ζ), (α, ζ) ∈ P holds. Then from (II) we can conclude that Tnz and
Tnα are Cauchy equivalent, that is,

lim
n→∞

ρ(Tnz, Tnα) = lim
n→∞

ρ(z, α) = ρ(z, α) = 0,

or z = α.
(iv) Let a1, a2 ∈ A and ζ ∈ B be such that (a1, ζ), (a2, ζ) ∈ P. From (i) we

get that Tna1 → z1 and Tna2 → z2, where z1, z2 ∈ A such that ρ(Tnai, T
nζ) =

dist(A,B), T zi = zi, i = 1, 2. From (ii) we can conclude that z1 = z2. □

5.2. Proof of Theorem 3.4. Since the subsets A,B ⊆ X have symmetric
roles, we can use Theorem 3.3 to make conclusions for elements from both
subsets.

(I) From (i) the sequences Tna, Tnb are Cauchy. If lim
n→∞

Tna = z and

(z, b) ∈ P, then Tz = z. Similarly, if lim
n→∞

Tnb = w and (a,w) ∈ P, then

Tw = w. Having both of them hold leads to Tz = z, Tw = w and

ρ(z, w) = lim
n→∞

ρ(Tna, Tnb) = dist(A,B).

Thus, the pair (z, w) is a best proximity pair for T .



BEST PROXIMITY PAIRS OF NONCYCLIC MAPPINGS ON P SETS 13

(II) This immediately follows from (ii).
(III) Let (α, β) be another best proximity pair. Without loss of generality,

let there exist ζ ∈ B such that (z, ζ), (α, ζ) ∈ P. Then from (iii) z = α and
w = β. Consequently, (z, w) = (α, β).

(IV) This follows immediately from (iv). □

6. Illustrative Example

Example 6.1. Let us consider the metric space (R, | · |). Let A = [0,∞),
B = (−∞,−1] and P = A × B. Let β(x) =

⌈
1
x

⌉
( mod 2) and the mapping

T : A ∪B → A ∪B be defined as

Tx =



1⌈
1
x

⌉
− 1

: x ∈ A \ {0} and β(x) = 0

x

4
: x = 0 or x ∈ A and β(x)= 1

−1⌈
−1
1+x

⌉
− 1

− 1 : x ∈ B \ {−1} and β(−x− 1) = 0

x+ 1

4
− 1 : x = −1 or x ∈ B and β(−x− 1)= 1.

Let us first note that dist(A,B) = 1.
By Corollary 2.8, we get that both ordered pairs (A,B) and (B,C) satisfy

the property UC.
It can be shown that T (A) ⊆ A and T (B) ⊆ B. Additionally, P = A × B.

Thus, P is T -expansive.
It is the case that for each (x, y) ∈ P there holds∣∣∣∣∣∣∣∣

T 2x ≤ x

2

T 2y ≥ y + 1

2
− 1.

From the last system, T 2x ∈ A, T 2y ∈ B, x ∈ A and y ∈ B it follows that for
every (x, y) ∈ P

|T 2x− T 2y| ≤
∣∣∣∣x2 −

(
y + 1

2
− 1

)∣∣∣∣ ≤ 1

2
|x− y|+ 1

2
,

i.e.,

|T 2x− T 2y| ≤ 1

2
|x− y|+ 1

2
dist(A,B).
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Thus, T is a noncyclic map with a contractive iterate on P with λ = 1
2 , nA(x) =

2 for each x ∈ A and nB(x) = 2 for each x ∈ B. Thus, using the facts that the
ordered pairs (A,B) and (B,C) satisfy the property UC, P being T -expansive
and (R, | · − · |) being complete, we can apply Theorem 3.4.

Clearly, from P = A × B, the conditions of (I), (II), (III) and (IV) are
fulfilled. Therefore, there exists a unique best proximity pair. One can easily
confirm that T0 = 0, T (−1) = −1 and |0 − (−1)| = dist(A,B). Thus, (0,−1)
is the unique best proximity pair.

As a final remark, from (II) it follows that 0 is the unique fixed point of T
in A and −1 is the only fixed point of T in B.
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ДВОЙКИ ТОЧКИ НА НАЙ-ДОБРО ПРИБЛИЖЕНИЕ ЗА
НЕЦИКЛИЧНИ ИЗОБРАЖЕНИЯ СЪС СВИВАЩИ ИТЕРАЦИИ

ВЪРХУ P МНОЖЕСТВО

Валентин Георгиев, Васил Желински, Боян Златанов

Резюме. Добре познатият принцип на Банах за свиващите изображения има
множество обобщения. В тази статия сме фокусирали вниманието си върху три
от тях: двойки точки на най-добро приближение за нециклично изображение в
пълно метрично пространство със свойството UC, условие за свиване, валидно
за някои елементи в пространството с въведена в него релация, формализирана
от P множество, и изображението да има свиващи итерации в точка. Доказваме
теорема, комбинираща тези три обобщения, предоставяйки достатъчни условия
за съществуване и единственост на двойки точки на най-добро приближение за
нециклични изображения със свиващи итерации върху P множества. Статията
завършва с илюстративен пример.
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