
REVIEW AND OUTLOOKS OF THE MEANS FOR
VISUALIZATION OF SYNTAX SEMANTICS AND

SOURCE CODE. PROCEDURAL AND OBJECT
ORIENTED PARADIGM – DIFFERENCES

Hristo Hristov

Abstract. In the article, we have reviewed the means for visualization of

syntax, semantics and source code for programming languages which support
procedural and/or object-oriented paradigm. It is examined how the structure of
the source code of the structural and object-oriented programming styles has
influenced different approaches for their teaching.

We maintain a thesis valid for the object-oriented programming paradigm,
which claims that the activities for design and programming of classes are done by
the same specialist, and the training of this specialist should include design as well
as programming skills and knowledge for modeling of abstract data structures. We
put the question how a high level of abstraction in the object-oriented paradigm
should be presented in simple model in the design stage, so the complexity in the
programming stage stay low and be easily learnable. We give answer to this
question, by building models using the UML notation, as we take a concrete
example from the teaching practice including programming techniques for
inheritance and polymorphism.

Keywords: Programming languages, Teaching methodology, Programming

paradigm, Means for visualization
2010 Mathematics Subject Classification: 68U02

1. Introduction

In general a program can be organized in two ways: around the code (what is
happening) or around the data (with what it works). When structural programming
is used, the programs are organized around the code i.e. “the code works on the
data”. Object-oriented programs work the other way. They are organized around
the data, and the key feature is “data control access to the code” [1]. Procedural
languages can be viewed as syntactic generalization of Neumann computers. Their
semantics is the same as the semantics of the machine languages. Therefore
procedural languages are high-level abstract versions of the von Neumann
computers [2]. What follows from this fact is that focus of attention and research in
programming languages is the algorithm, as the program in essence is carrying out
of an algorithm. The increasing level of complexity of the algorithmic
implementations has led to a search for means of their representation. Thus were
created methodologies for teaching of procedural programming languages, which

444 Anniversary International Conference REMIA2010

main focus is visualization of the algorithm, along with syntax and semantics of the
language. The most used means for visualization, used in the specialized literature
can be formal such as: the Backus-Naur meta language and language of syntactic
diagrams, but can also be informal. In second case there is “non precision” from
the point of exact definition and formalization, but this is justified as it is more
accessible and easy to understand for students and learners. Unlike syntax, it is
common the semantics of a programming language to be presented descriptively,
and it is natural. In some cases it is appropriate the description to be enriched with
logical block schemes, diagrams and examples. For instance the block schemes are
useful when presenting conditional operators, cycle operators, calling subroutine,
etc. Using logical block schemes and other kinds of diagrams makes it easy to
understand the logics of the operator as well as it easy remembering.

Essential advancement in the development of the procedural programming is
made with the development of the so called “Structured program theorem”,
connected with the names of Corrado Böhm and Giuseppe Jacopini. It states that
every computable function can be implemented in a programming language that
combines subprograms in only three specific ways: „sequence”, „selection” and
„ repetition”. With the gained view over the question, the methodological tasks
when teaching a structured programming language have become much easier. For
the presentation of source code it will be enough to find out means which represent
the three outlined program constructions – separate or in combination with one
another. Besides the source code of a given programming language, for ease of
learning, the following means for visualization have gained popularity in practice:
logical block-schemes, text in form of pseudocode, Nassi-Shneiderman diagrams,
HIPO diagrams, diagrams of data flows etc. Such means are natural instruments
for creation of methods for representing source code. But they have reached the
boundaries of their usefulness and although they have their place during the lessons
it is necessary to search for methods which use means corresponding to the
contemporary technologies. Such means which animate algorithms, dynamically
visualize graphics, generate texts and other solutions which can be integrated in the
computer platforms. Of course, such methods are created daily from software
companies and university teams. Such system for helping the whole process of
teaching programming skills is being created at FMI in PU [3].

Deduction №1. Commonly used means for description and presentation of
syntax, semantics and visualization of source code are: formal – Backus-Naur meta
language, logical block-schemes, language of syntactic diagrams, Nassi-
Shneiderman diagrams and informal – descriptive explanations, text in form of
pseudocode etc. These means have reached the boundaries of their usefulness.

Basis for the development of new means for visualization of syntax, semantics
and source code will be the technological solutions which dynamically visualize
and automatically generate text, sounds, animation and video in such a way that an
“intelligent” dialogue between the computer system and the student can be
achieved.

10-12 December 2010, Plovdiv, Bulgaria 445

2. Behavior of the programmer when writing structural and object-
oriented code

The object-oriented paradigm is created by combining the best ideas of the
structural programming style with some new principles and conceptions. The result
is different way of organization of a program, with higher level of abstraction.

How the high level of abstraction of the object-oriented programming
languages influences the methodologies of teaching?

If we assume (with some notes), that the development of every software
project passes the following stages: analysis, design, programming, test and
support and ask what is the purpose of the programming language in such project
we must note that the structural programming languages are means for computer
implementation of an algorithm, while object-oriented languages are means for
computer modeling and implementation of real objects. Indeed, in structural
programming during the design stage a model of the problem is created and
algorithms are chosen (or created), which during the programming stage are
implemented. Said with other words programmers deal only with the
programming; analysis and design is done by more experienced specialists –
software architects.

Is this the same with object-oriented programming?
In object-oriented programming style the programmer takes part in both the

design and programming stages. Classes and objects are basic concepts in the
object-oriented paradigm and by definition for every program: a class is an
abstract data structure which has its own characteristics and interface, while an
object is concrete implementation of a class with its own memory, called state of
the characteristics of the object and its own behavior, defined by the interface of
the class, but depending on the current state of the characteristics. Therefore, the
class is the blueprint from which from the object is created an entity; its creation
before programming is designed - the activities designing a class and programming
a class are closely connected and are done by the same specialist.

Deduction №2. In object-oriented paradigm the design and programming of
classes is done by the same specialist, therefore the training of this specialist must
include both design and programming knowledge and skills for modeling of
abstract data structures.

3. Differences in the ways of teaching structured and object-oriented
paradigm

In every textbook for procedural programming, we find unchangeably the
following line of themes: common structure of a program, basic variables and
types, expressions, assignment operators, input/output operators, conditional and
cyclic operators, composite types, functions, recursion, etc. [4] The gained, during
the years, clarity of what learning material follows which has made easy the tasks
faced by the methodologies for teaching procedural programming style. On the
other side, in object-oriented programming style there is no concrete and

446 Anniversary International Conference REMIA2010

commonly accepted methodology for presenting the learning material. The
question of what pedagogical approach to be used when introducing the ”object”
concept is still open, with two positions being defended – early introduction and
late introduction.

Why is accepted the early introduction of objects?
Object-oriented languages have the purpose to conduct concepts, and to learn

and understand those concepts, one should know the principles which build them.
The late introduction of objects means that structural way of thinking for programs
should be used until objects are presented. This amplifies the algorithmic way of
thinking and creates barriers, which make harder the understanding of the model of
organization and functioning of an object-oriented program. Although the
implementation of each method requires an algorithm, this is not main principle
when writing a program. Beginning point for building software using object-
oriented language are the principles – abstraction, encapsulation, inheritance and
polymorphism. And if, from pedagogical point of view, inheritance and
polymorphism are principles which are not necessary in the beginning lessons,
abstraction and encapsulation are mandatory as a way of thinking and model for
designing an abstract data structure. Separating those four principles from syntax
and semantics for given object-oriented programming language has key role for the
good teaching practice of this paradigm. It is necessary for the student to gain
conceptual thinking how to design his programs based on the above mentioned
principles, and then to program using the syntax and semantics of a given object-
oriented language. All this requires early introduction to objects and classes in the
learning process. Even more – guiding motif when composing the learning content
should be the principles of object-oriented programming, not the grammar of the
programming language. As in the ideology of object-oriented programming the
first main principle is “everything is an object”[5], then with this should the
teaching begin.

Deduction №3. Regardless of the methodology for teaching the procedural
programming paradigm, it is common practice that the structure of the learning
content should follow the structure of the programming language.

Deduction №4. The early introduction of the “object” concept indicates
teaching of object-oriented programming style, the late introduction indicates
mixed approach with structural way of teaching in the beginning and then adding
the object-oriented principles.

Here arises another important methodological question! What means and
methods should be used during the design stage such that they will allow to
differentiate design from programming from one side, and to underline the
dependency of the programming stage from the design stage? For the programmer
and the student it is of big significance, how the high level of abstraction in the
object-oriented paradigm should be presented through simple model in the design
stage so that the complexity in the programming stage will not rise?

10-12 December 2010, Plovdiv, Bulgaria 447

Reasonable answer to the first question is given by the Unified Modeling
Language - UML, while answer to the second is the appropriate use of its graphical
notation.

What follows is the design a part of simple program meant for teaching
purposes, with which we will underline the power of the UML notation. The used
example is not method for teaching, but it can serve as basis for the creation of
methods for teaching. It is given as technique which uses graphical model as object
for discussion between teacher and student.

So let put a task to create a program which shows how the principles of
programming work – abstraction, inheritance, polymorphism and some of their
techniques composition, implementation, overrziding, up casting and others. For
the purpose we will use a class which we will call ComputerDevice. We assume
that devices from this type are: Laptop, MobilePhone и GPS-Device, for which we
will also create classes. Before designing the above mentioned, in order to avoid
some difficulties which may arise in the future and to follow the good practice in
object-oriented design, we will define common for all other classes – the class
Device. After that we design the concrete class – ComputerDevice. Finally we look
at the devices: Laptop, MobilePhone and GPS-Device. The first principle of object-
oriented programming that we come upon is abstraction which by definition
includes taking those characteristics of the real world object which are relevant to
the task and ignoring the ones that have no relation to the problem. Before doing
this let’s define two interfaces: first - Action, which has methods open() and close()
and second - Performance, with methods play() and stop(). As the operations
open() and close() in the context of our task are more common than play() and
stop(), we design the interface Performance, to be inheritor of the Action interface.
To show this connection we use UML generalization as shown on (Fig. 1).

Fig.1. Interfaces presented by UML class diagram and generalization notation

Now back to classes which we bind in hierarchy. As expected base for the
hierarchy is the Device class, its inheritor is ComputerDevice; at the bottom of the
hierarchy are Laptop, MobilePhone and GPS-Device. Besides this we make
ComputerDevice to implement the Action interface, and Laptop and MobilePhone
classes to implement the Performance interface. But Performance is inheritor to
Action, therefore in Laptop and MobilePhone may be implemented the methods of
the Action interface – open() and close(). From other side these methods are
implemented in the parent class – ComputerDevice. Not such is the case with GPS-

448 Anniversary International Conference REMIA2010

Device class, as it does not implement the Performance interface. GPS-Device
inherits ComputerDevice and therefore can predefine the methods of its parent, but
if it does not need them this is not obligatory. Such relations of inheritance and
implementation between interfaces and classes presented in the programming class
may sound difficult to understand for the student at first, but everything comes into
place, when we view closely and discuss the following (Fig. 2) (Let’s underline
that the figure is used for discussion, and not for a model to be used for writing
source code).

Although, that from the UML model we cannot tell what the source code
should be, we can still have a rough idea how it should look like and we will have
concept for its structure.

Fig. 2. Model of hierarchy of classes and interfaces

Similar model as (Fig. 2) is good to show the techniques expanding of classes
and interfaces during inheritance and overriding, run-time banding and up casting
in polymorphism. But what is the situation when these techniques should be
interpretated into source code? Independent of how clearly the thesis is stated, the
abstraction of the model turns out to be high barrier for most of the students. Here
comes the advantage of UML notations – using small number of graphical signs
and diagrams we can summarize hundreds of lines source code. In most cases the
whole graphical model is visible on the screen and thus it easy to trace relations
like composition, inheritance, implementation, overriding, etc. Thus the tidy and
easy to understand graphical model becomes good basis for communication
between the teacher and the student. Such communication has very important
pedagogical characteristic – the discussion is at level design and modeling and not

10-12 December 2010, Plovdiv, Bulgaria 449

programming. It was mentioned that in the first case the discussion is about
abstract principles and techniques of programming, in the second it is about syntax
and semantic rules of concrete programming language. Such differentiation
separates the levels of abstraction and has significant meaning for the student.
Besides, by creating models of UML notations one can have a rough idea of how
the source code should look like which helps the student to get clear view of the
software perspective.

Deduction №5. By the use of graphical notation like the UML language, one
can achieve differentiation of the design and programming stages and separation of
the levels of abstraction. Carefully designed graphical models create good basis for
wholesome discussions between teacher and student.

4. Conclusion

The above review and analysis of the means for presentation and their
separation of those who visualize procedural source code and the ones that
visualize object-oriented one shows that in the first case it is enough to visualize
the algorithm of the program, and in the second – it is necessary to visualize the
model of the program’s structure. The commonly accepted means for visualization
of algorithms, such as logical block schemes, syntactic diagrams, Nassi-
Shneiderman diagrams, pseudo code, etc., have reached the boundaries of their
usefulness. Their use is necessary in the programming classes, but the perspectives
for improvement of the methodologies for teaching are connected with
technological solutions which dynamically visualize and automatically generate
text, sound, animation, graphics and. In the second case, object-oriented
programming, the problem of visualization is more abstract and it is necessary to
be split in two: first, design – the model of the program is visualized, as main
feature of the paradigm is the relations between objects and second visualization of
a source code in the boundaries of a class method – viewed as realization of an
algorithm. The separating of visualization at level design and level programming
helps to reduce the complexity of the problem. It is perspective to use graphical
notations, through which simple but conceptual models of the programs are
created. Such models give opportunity to discuss the advantages and disadvantages
of using one or another programming technique in given situation.

References

[1] Schildt, H. A Beginner’s Guide, Sofia, SoftPress Ltd, 2001.

[2] Todorova, M. Programming in C++, Sofia, Ciela, 2002.

[3] Krushkov, H. M. Krushkova. A Computer-based Tutoring System for
Programming, Mathematics and Education in Mathematics. Proceedings of
the Thirty Ninth Spring Conference of the Union of Bulgarian
Mathematicians, (2010), pp. 354-358.

450 Anniversary International Conference REMIA2010

[4] Dobrev, D. Methodology of Statement Control and Data Choice in Procedure-

Oriented Programming, Mathematics and Education in Mathematics.
Proceedings of the Thirty Fifth Spring Conference of the Union of Bulgarian
Mathematicians, (2006), pp. 387-392.

[5] Eckel, B. Thinking in Java, Sofia, SoftPress Ltd, 2002.

Hristo Hristov
Faculty of Mathematics and Informatics
Plovdiv University “Paisii Helendarski”
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: hth@uni-plovdiv.bg

