REVIEW AND OUTLOOKS OF THE MEANS FOR

VISUALIZATION OF SYNTAX SEMANTICS AND

SOURCE CODE. PROCEDURAL AND OBJECT
ORIENTED PARADIGM — DIFFERENCES

Hristo Hristov

Abstract. In the article, we have reviewed the means for alization of
syntax, semantics and source code for programmémguages which support
procedural and/or object-oriented paradigm. It isaenined how the structure of
the source code of the structural and object-oBdnprogramming styles has
influenced different approaches for their teaching.

We maintain a thesis valid for the object-orienfgdgramming paradigm,
which claims that the activities for desigh andgnamming of classes are done by
the same specialist, and the training of this saléstishould include design as well
as programming skills and knowledge for modelingladtract data structures. We
put the question how a high level of abstractiortia object-oriented paradigm
should be presented in simple model in the dediges so the complexity in the
programming stage stay low and be easily learnable= give answer to this
question, by building models using the UML notgtias we take a concrete
example from the teaching practice including progming techniques for
inheritance and polymorphism.

Keywords: Programming languages, Teaching methodology, Brogring
paradigm, Means for visualization
2010 Mathematics Subject Classification68U02

1. Introduction

In general a program can be organized in two wag®ind the code (what is
happening) or around the data (with what it workghen structural programming
is used, the programs are organized around the ioced&he code works on the
data”. Object-oriented programs work the other wllyey are organized around
the data, and the key feature is “data control ssd¢e the code” [1]. Procedural
languages can be viewed as syntactic generalizatibleumann computers. Their
semantics is the same as the semantics of the meaddnguages. Therefore
procedural languages are high-level abstract wessiof the von Neumann
computers [2]. What follows from this fact is tliatus of attention and research in
programming languages is the algorithm, as therprogn essence is carrying out
of an algorithm. The increasing level of complexitf the algorithmic
implementations has led to a search for meanseif thpresentation. Thus were
created methodologies for teaching of proceduraggamming languages, which

444 Anniversary International Conference REMIA2010

main focus is visualization of the algorithm, alomigh syntax and semantics of the
language. The most used means for visualizaticed usthe specialized literature
can be formal such athe Backus-Naur meta languagadlanguage of syntactic
diagrams,but can also be informal. In second case ther@as precision” from
the point of exact definition and formalization,tlihis is justified as it is more
accessible and easy to understand for studentdeanders. Unlike syntax, it is
common the semantics of a programming languages tprésented descriptively,
and it is natural. In some cases it is approptiaedescription to be enriched with
logical block schemes, diagrams and examples.riaparnice the block schemes are
useful when presenting conditional operators, cygerators, calling subroutine,
etc. Using logical block schemes and other kindgliafjframs makes it easy to
understand the logics of the operator as well aasy remembering.

Essential advancement in the development of theepiral programming is
made with the development of the so called “Stmsztuprogram theorem”,
connected with the names of Corrado Bohm and Gpesdpcopini. It states that
every computable function can be implemented irragramming language that
combines subprograms in only three specific wagsquence’, ,selection” and
.repetition”. With the gained view over the question, the métihagical tasks
when teaching a structured programming language bacome much easier. For
the presentation afource codét will be enough to find out means which represent
the three outlined program constructions — sepavat® combination with one
another. Besides the source code of a given pragnagnlanguage, for ease of
learning, the following means for visualization kagained popularity in practice:
logical block-schemes, text in form of pseudocddessi-Shneiderman diagrams,
HIPO diagrams, diagrams of data flows e®uch means are natural instruments
for creation of methods for representing sourceecd@®lt they have reached the
boundaries of their usefulness and although theg Heeir place during the lessons
it is necessary to search for methods which usensmearresponding to the
contemporary technologies. Such means wiinimate algorithms, dynamically
visualize graphics, generate texisd other solutions which can be integrated in the
computer platforms. Of course, such methods aratededaily from software
companies and university teams. Such system fagirtelthe whole process of
teaching programming skills is being created at FvRPU [3].

Deduction Nel. Commonly used means for description and presentaif
syntax, semantics and visualization of source evdeformal — Backus-Naur meta
language, logical block-schemes, language of stintadiagrams, Nassi-
Shneiderman diagrams and informal — descriptivelaggtions, text in form of
pseudocode etc. These means have reached the hesrafdheir usefulness.

Basis for the development of new means for visatihn of syntax, semantics
and source code will be the technological solutiatméch dynamically visualize
and automatically generate text, sounds, animat@hvideo in such a way that an
“intelligent” dialogue between the computer systeimd the student can be
achieved.

10-12 December 2010, Plovdiv, Bulgaria 445

2. Behavior of the programmer when writing structural and object-
oriented code

The object-oriented paradigm is created by combirtire best ideas of the
structural programming style with some new prinegpand conceptions. The result
is different way of organization of a program, witigher level of abstraction.

How the high level of abstraction of the objectoted programming
languages influences the methodologies of teaching?

If we assume (with some notes), that the developroérevery software
project passes the following stages: analysis,gdesprogramming, test and
support and ask what is the purpose of the progiamianguage in such project
we must note that the structural programming laggaare means for computer
implementation of an algorithmyhile object-oriented languages areeans for
computer modeling and implementation of real olsjethdeed, in structural
programming during the design stage a model of ghablem is created and
algorithms are chosen (or created), which during pmogramming stage are
implemented. Said with other words programmers dealy with the
programming; analysis and design is done by mongemenced specialists —
software architects.

Is this the same with object-oriented programming?

In object-oriented programming style the programmadees part in both the
design and programming stages. Classes and olgeetbasic concepts in the
object-oriented paradigm and by definition for gvgarogram:a class is an
abstract data structurevhich has its own characteristics and interfaceijenén
objectis concretdmplementatiorof a class with its own memory, called state of
the characteristics of the object and its own beladefined by the interface of
the class, but depending on the current state etharacteristics. Thereforine
classis the blueprint from which frorthe objectis created an entity; its creation
before programming is designed - the activitdesigning a clasandprogramming
a classare closely connected and are done by the sam&akgte

Deduction Ne2. In object-oriented paradigm thigesignand programmingof
classes is done by the same specialist, therdier&rdining of this specialist must
include both design and programming knowledge akitls sfor modeling of
abstract data structures.

3. Differences in the ways of teaching structured andbject-oriented
paradigm

In every textbook for procedural programming, wedfiunchangeably the
following line of themes:common structure of a prograrbasic variables and
types, expressions, assignment operators, inpyuibwdperators, conditional and
cyclic operators, composite types, functions, reiam, etc[4] The gained, during
the years, clarity of what learning material followhich has made easy the tasks
faced by the methodologies for teaching procedpragramming style. On the
other side, in object-oriented programming styler¢his no concrete and

446 Anniversary International Conference REMIA2010

commonly accepted methodology for presenting thanieg material. The

question of what pedagogical approach to be useshvititroducing the "object”

concept is still open, with two positions being etefed — early introduction and
late introduction.

Why is accepted the early introduction of objects?

Object-oriented languages have the purpose to corduncepts, and to learn
and understand those concepts, one should knowrith@ples which build them.
The late introduction of objects means that stmattway of thinking for programs
should be used until objects are presented. Thidites the algorithmic way of
thinking and creates barriers, which make hardewutiderstanding of the model of
organization and functioning of an object-orientpdogram. Although the
implementation of each method requires an algorittimis is not main principle
when writing a program. Beginning point for buildirsoftware using object-
oriented language are the principleabstraction, encapsulation, inheritance and
polymorphism And if, from pedagogical point of viewjnheritance and
polymorphismare principles which are not necessary in the rivegg lessons,
abstractionand encapsulatiorare mandatory as a way of thinking and model for
designing an abstract data structure. Separatimgetfour principles from syntax
and semantics for given object-oriented programrtanguage has key role for the
good teaching practice of this paradigm. It is ssaey for the student to gain
conceptual thinking how tdesignhis programs based on the above mentioned
principles, and then to program using the syntak semantics of a given object-
oriented language. All this requires early intratlut to objects and classes in the
learning process. Even more — guiding motif whemposing the learning content
should be the principles of object-oriented prograng, not the grammar of the
programming language. As in the ideology of obmétnted programming the
first main principle is “everything is an object][5then with this should the
teaching begin.

Deduction Ne3. Regardless of the methodology for teaching theqatoral
programming paradigm, it is common practice tthe structure of the learning
content should follow the structure of the programgrianguage.

Deduction Ne4. The early introduction of the “object” concept iodies
teaching of object-oriented programming style, tage introduction indicates
mixed approach with structural way of teachingha beginning and then adding
the object-oriented principles.

Here arises another important methodological gomestiVvhat means and
methods should be used during the design stage thaththey will allow to
differentiate design from programming from one side, and to underline the
dependency of the programming stage from the destagre? For the programmer
and the student it is of big significance, how tigh level of abstraction in the
object-oriented paradigm should be presented thra@igple model in the design
stage so that the complexity in the programmingestaill not rise?

10-12 December 2010, Plovdiv, Bulgaria 447

Reasonable answer to the first question is giverthey Unified Modeling
Language - UML, while answer to the second is fh@apriate use of its graphical
notation.

What follows is the design a part of simple programant for teaching
purposes, with which we will underline the powertls¢ UML notation. The used
example is not method for teaching, but it can sexs basis for the creation of
methods for teaching. It is given as technique tviises graphical model as object
for discussion between teacher and student.

So let put a task to create a program which shoows the principles of
programming work —abstraction, inheritance, polymorphisend some of their
techniquescomposition, implementation, overrzidjngp castingand others. For
the purpose we will use a class which we will €dimputerDeviceWe assume
that devices from this type areaptop MobilePhonex GPS-Devicefor which we
will also create classeBefore designing the above mentioned, in ordervimda
some difficulties which may arise in the future @odollow the good practice in
object-oriented design, we will define common fdir ather classes — the class
Device After that we design the concrete clagsemputerDeviceFinally we look
at the deviced.aptop MobilePhoneand GPS-DeviceThe first principle of object-
oriented programming that we come uponalsstraction which by definition
includes taking those characteristics of the realldvobject which are relevant to
the task and ignoring the ones that have no relatdahe problem. Before doing
this let's define two interfaces: firstAction, which has methodspen()andclose()
and second Performance with methodsplay() and stop(). As the operations
open()andclose()in the context of our task are more common thky() and
stop() we design the interfadeerformanceto be inheritor of thé\ctioninterface
To show this connection we use UML generalizatioslzown or{Fig. 1).

=interfuce== ==interfuce==

Ductint :] Perfomtuarce
ametil) Dlay)
clogel) stap()

Fig.1. Interfaces presented by UML class diagrathgemeralization notation

Now back to classes which we bind in hierarchy.ekpected base for the
hierarchy is théeviceclass, its inheritor i€omputerDeviceat the bottom of the
hierarchy areLaptop MobilePhone and GPS-Device.Besides this we make
ComputerDevice timplement theAction interface and Laptop and MobilePhone
classes to implement tHeerformanceinterface.But Performanceis inheritor to
Action,therefore inLaptop and MobilePhonmay be implemented the methods of
the Action interface — open() and close(}rrom other side these methods are
implemented in the parent clas€emputerDeviceNot such is the case wiBPS-

448 Anniversary International Conference REMIA2010

Device class as it does not implement tHeerformanceinterface. GPS-Device
inherits ComputerDevicand therefore can predefine the methods of itsabut
if it does not need them this is not obligatoryclsuelations of inheritance and
implementation between interfaces and classesmezsé the programming class
may sound difficult to understand for the studdirftrat, but everything comes into
place, when we view closely and discuss the folhgwiFig. 2) (Let's underline
that the figure is used for discussion, and notafanodel to be used for writing
source code).

Although, that from the UML model we cannot tell aththe source code
should be, we can still have a rough idea howaukhlook like and we will have
concept for its structure.

Drerice
traderrrls © Sring
model : String
set()
20
CormparterTrenice ==irterface==
madein : Fieger Actiom
= =reglize== openg)
s | ______ _[> closel)
gt
Laptop MlobileFhucme P SDwvice T
mmaeicLibrarie © Librarie mmaeicLibrarie © Librarie doonnertLibrarie : Librarie -
doomnertTibrarie : Librarie doommert Tibrarie © Librarie pichmreLibrarie : Librarie =< interface=
picture Librarie : Librarie pictureLibrarie : Librarie Purfomtuituce
open) open) apenl) ol
clogel) clogel) clogel) ctop0)
plal) playl) chonahlip()
stop() stop()

Fig. 2. Model of hierarchy of classes and interface

Similar model agFig. 2) is good to show the techniquespandingof classes
and interfaces during inheritance ameerriding, run-time bandingandup casting
in polymorphism. But what is the situation when sthetechniques should be
interpretated into source code? Independent of ¢learly the thesis is stated, the
abstraction of the model turns out to be high kearor most of the students. Here
comes the advantage of UML notations — using smathber of graphical signs
and diagrams we can summarize hundreds of linessaode. In most cases the
whole graphical model is visible on the screen #m it easy to trace relations
like composition, inheritance, implementation, aiging, etc. Thus the tidy and
easy to understand graphical model becomes gooi$ s communication
between the teacher and the student. Such comntionichas very important
pedagogical characteristic — the discussion is\alHesignand modelingand not

10-12 December 2010, Plovdiv, Bulgaria 449

programming. It was mentioned that in the first case the disomsss about
abstract principles and techniques of programmnimgfe second it is about syntax
and semantic rules of concrete programming langu&eh differentiation
separates the levels of abstraction and has signifimeaning for the student.
Besides, by creating models of UML notations one lcave a rough idea of how
the source code should look like which helps thelesit to get clear view of the
software perspective.

Deduction Ne5. By the use of graphical notation like the UML laage, one
can achieve differentiation of tldesignandprogrammingstages and separation of
the levels of abstraction. Carefully designed giegdhmodels create good basis for
wholesome discussions between teacher and student.

4. Conclusion

The above review and analysis of the means foreptaton and their
separation of those who visualize procedural sowode and the ones that
visualize object-oriented one shows that in thst firase it is enough to visualize
the algorithm of the program, and in the secondis necessary to visualize the
model of the program’s structure. The commonly ptee means for visualization
of algorithms, such as logical block schemes, <syjittadiagrams, Nassi-
Shneiderman diagrams, pseudo code, etc., haveegdhblk boundaries of their
usefulness. Their use is necessary in the progragolasses, but the perspectives
for improvement of the methodologies for teachinge aonnected with
technological solutions which dynamically visualiaead automatically generate
text, sound, animation, graphics and. In the seccade, object-oriented
programming, the problem of visualization is mobsteact and it is necessary to
be split in two: first, design — the model of theogram is visualized, as main
feature of the paradigm is the relations betwegeotd and second visualization of
a source code in the boundaries of a class methadwed as realization of an
algorithm. The separating of visualization at legtekignand levelprogramming
helps to reduce the complexity of the problemslperspective to use graphical
notations, through which simple but conceptual node the programs are
created. Such models give opportunity to discussattvantages and disadvantages
of using one or another programming technique wemisituation.

References

[1] Schildt, H. A Beginner's Guide, Sofia, SoftPsdgd, 2001.
[2] Todorova, M. Programming in C++, Sofia, Cie2802.

[3] Krushkov, H. M. Krushkova. A Computer-based drutg System for
Programming, Mathematics and Education in MathessaRroceedings of
the Thirty Ninth Spring Conference of the UniorBaflgarian
Mathematicians, (2010), pp. 354-358.

450 Anniversary International Conference REMIA2010

[4] Dobrev, D. Methodology of Statement Control data Choice in Procedure-
Oriented Programming, Mathematics and Educatidvidthematics.
Proceedings of the Thirty Fifth Spring Conferentée Union of Bulgarian
Mathematicians, (2006), pp. 387-392.

[5] Eckel, B. Thinking in Java, Sofia, SoftPresd,12002.

Hristo Hristov

Faculty of Mathematics and Informatics
Plovdiv University “Paisii Helendarski”
236 Bulgaria Blvd.

4003 Plovdiv, Bulgaria

e-mail: hth@uni-plovdiv.bg

