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Communicated by TEMENOUJKA PENEVA

Abstract. Ulam–Hyers stability for boundary value problem for differ-

ence equations is discussed and some misunderstandings in the literature
are pointed out. A new approach is suggested to avoid the commented

main misunderstanding. The classical difference inequality is combined

with an inequality for the boundary condition. Note that this approach
does not keep the main idea of Ulam type stability because the solution

of the studied boundary value problem is fixed and it has to be close to
any solution of the defined inequalities. In connection with this we define
a modified Ulam–Hyers stability and sufficient conditions are obtained.
The results are illustrated on several examples.

1. Introduction

Ulam-type stability results are useful in many applications in numerical anal-
ysis, optimization, etc., where finding the exact solution is quite difficult. The
main idea in the application of Ulam type stability to initial value problems is
that the initial value of the studied initial value problem depends on the partic-
ular chosen solution of the corresponding inequality (see, for example, [1], [3],
[5], [6], [7], [10]). Unfortunately, this idea is not used in the application to some
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initial value problems for delay equations as well as for boundary value problems
(BVP) and there are some misunderstandings in some published papers, such
as [9] for delays, [2], [4], [8] for BVP for fractional delay differential equations.
Inspired by above, we consider a scalar nonlinear difference equation with a
boundary conditions. We suggest a correct way to study Ulam–Hyers stability
for the given BVP by adding to the corresponding inequality an inequality con-
cerning the boundary conditions. We define a modified Ulam–Hyers stability
which main point is the application of the fixed unique solution of the studied
BVP and its closeness to any solution of the defined different inequalities. We
provide several examples to discuss the motivation of the studied problem as
well as to illustrate the application of the suggested approach to a particular
BVP. The examples are solved by the help of Wolfram Mathematica.

2. Statement of the problem and definition of solution

Let Z+ be the set of all nonegative integers; a, b ∈ Z+ : a < b < ∞;
Z[a, b] = {z ∈ Z+ : a ≤ z ≤ b}.

Consider the nonlinear difference equation

x(n) = f(n, x(n− 1), x(n)) for n ∈ Z[a+ 1, b], (1)

with a boundary condition

αx(a) + βx(b) = γ, (2)

where f : Z[a+ 1, b]× R → R, α, β, γ ∈ R, α ̸= 0 are given constants.

Remark 2.1. Note that partial cases of the boundary condition (2) are the
initial value problem (α = 1, β = 0), the periodic boundary condition (α = 1,
β = −1, γ = 0), the anti-periodic boundary condition (α = 1, β = 1, γ = 0).

Usually, the difference equation describes the development of a certain phe-
nomenon by recursively defining a sequence, each of whose terms is defined as a
function of the preceding terms, once one or more initial terms are known (see,
for example, [3]). In our studied problem, the present state is also involved
nonlinearly in the right side part. It makes the answer of the question about
the existence of the solution more complicated.

Remark 2.2. Note that the nonlinear equation z = f(n, x, z) could not have
a solution w.r.t. z ∈ R for any n ∈ Z and x ∈ R.

In connection with the written above we introduce the following assumption:
(A) For any n ∈ Z[a+ 1, b] and x ∈ R the algebraic equation z = f(n, x, z)

has a unique solution z = z(n, x) ∈ RN .
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Remark 2.3. The assumption (A) guarantees the existence of a solution of
(1) with an initial condition x(a) = x0 with an arbitrary initial value x0 ∈ R.

Remark 2.4. If condition (A) is satisfied we denote F (n, x) = f(n, x, z(n, x)).

Example 2.1. Let f(n, x, z) = nx + 0.5z. Then the equation mentioned in
Remark 2.2 is reduced to z = nx+0.5z with a solution z = 2nx and Eq. (1) is

reduced to x(n) = 2nx(n− 1), n ∈ Z[a, b] with a solution x(n) = A2k
∏k

i=1(a+

i), n = a + k, k = 1, 2, . . . , b − a, where αA + βA2b−a
∏b−a

i=1 (a + i) = γ or

A = γ

α+β2b−a
∏b−a

i=1 (a+i)
iff α ̸= −β2b−a

∏b−a
i=1 (a+ i).

In our further work we will assume condition (A) is satisfied and according
to Remark 2.4 we consider the difference equation

x(n) = F (n, x(n− 1)) for n ∈ Z[a+ 1, b]. (3)

3. Ulam–Hyers stability

Let ε > 0. We consider the following inequality

|y(n)− F (n, y(n− 1))| ≤ ε for n ∈ Z[a+ 1, b], (4)

where y(a) ∈ R is an arbitrary number.

Remark 3.1. If the function y(n), n ∈ Z[a + 1, b] satisfies the inequality (4)
then there exists a function h : Z[a + 1, b] → R : |h(n)| ≤ ε, n ∈ Z[a + 1, b]
such the the equality

y(n)− F (n, y(n− 1)) + h(n) = 0 for n ∈ Z[a+ 1, b] (5)

holds.

The inequality (4) plays the main role in the Ulam–Hyers stability. When
Ulam–Hyers stability is applied to the difference equations with an initial condi-
tion then an arbitrary solution y(n), n ∈ Z[a, b] of the inequality (4) is chosen,
the solution x(n), n ∈ Z[a+ 1, b] of the equation (3) is taken with z(a) = y(a)
and the closeness between both functions y(n) and x(n) is studied.

The application of Ulam–Hyers stability for boundary value problems is not
so simple because for any chosen solution y(n), n ∈ Z[a, b] of the inequality
(4), if we consider a solution x(n), n ∈ Z[a, b] of BVP (3), (2), both functions
y(n) and x(n), differently than the case of initial condition, have no connection
and they could be not close enough. This misunderstanding could be seen in
several published papers (see, for example, [4], [8]).

Note that for a fixed ε the inequality (4) has many solutions. Some of them
could satisfy the boundary condition (2) but some of them could not. This
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does not allow us to claim the closeness between the solutions of inequality (4)
and the solutions of BVP (3), (2). We will illustrate it in an example.

Example 3.1. To be more clear and to emphasize on the application of Ulam–
Hyers stability we consider a = 0, b = 2 and consider the following BVP

x(n) = 0.5
x(n− 1)

1 + nx2(n− 1)
for n ∈ Z[1, 4], x(0) = 2x(4) + 1. (6)

Denote x(0) = A then the solution of (6) is

x(0) = A

x(1) =
0.5A

1 +A2

x(2) =
0.25A(1 +A2)|
1 + 2.5A2 +A4

x(3) =
0.125A(1 +A2)(1 + 2.5A2 +A4)

1 + 5.1875A2 + 8.625A4 + 5.1875A6 +A8

x(4) =
A1

A2
,

where

A1 = 0.0625A(1+A2)(1+2.5A2+A4)(1+5.1875A2+8.625A4+5.1875A6+A8)

and

A2 =1 + 10.4375A2 + 44.5977A4 + 101.063A6 + 131.867A8

+ 101.063A10 + 44.5977A12 + 10.4375A14 +A16.

From the boundary condition we get A − 2x(4) = 1 which has one real
solution A ≈ 1.05291.

For particular value of A the solution is given in Table 1.

Table 1. Values of the solution of (6).

Solution A=1.05291
x(0) 1.05291
x(1) 0.249668
x(2) 0.110996
x(3) 0.05352
x(4) 0.0264569
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Now, let ε > 0 be an arbitrary number and consider the inequality∣∣∣∣y(n)− 0.5
y(n− 1)

1 + ny2(n− 1)

∣∣∣∣ ≤ ε for n = 1, 2. (7)

We will obtain one of the possible solutions of the inequality (7) to illustrate
the suggested way to apply the ideas of Ulam–Hyers stability.

Let y(0) = 1. Then two of the possible solutions of (7) are given in Table 2.

Table 2. Values of the solution of inequality (7).

Solution ε = 0.1 ε = 0.5
y(1) 0.3 0.5
y(2) 0.177119 0.416667
y(3) 0.130942 0.386986
y(4) 0.128686 0.371006

It is obvious that the solutions of (7) do not satisfy the boundary condition
y(0)− 2y(4) = 1.

Now we will study Ulam–Hyers stability of BVP(3), (2). Example 3.1 shows
that we could not proceed directly by the application only of inequality (4) in
study Ulam–Hyers stability.

We will consider the difference inequality (4) with an inequality for the
boundary condition, i.e., we will consider the following inequalities

|y(n)− F (n, y(n− 1))| ≤ ε for n ∈ Z[a+ 1, b],

|αy(a)− βy(b)− γ| ≤ ε.
(8)

Note that for any ε inequalities (8) have many solutions.

Remark 3.2. If the function y(n), n ∈ Z[a+1, b] satisfies the inequalities (8)
then there exist a function h : Z[a+1, b] → R : |h(n)| ≤ ε, n ∈ Z[a+1, b] and
constants Kn : |Kn| ≤ ε, n ∈ Z[a+ 1, b], such the the equalities

y(n)− F (n, y(n− 1))− h(n) = 0 for n ∈ Z[a+ 1, b],

αy(a)− βy(b)− γ +Kn = 0
(9)

hold.

Definition 3.1. The BVP (3), (2) is modified Ulam–Hyers stable if there
exists a sequence of positive real numbers Cn > 0, n ∈ Z[a, b] such that for
each ε > 0 and for each solution y(n) of the inequalities (8) the inequality

|y(n)− x(n)| ≤ Cnε, n ∈ Z[a, b] (10)
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holds where x(n) is the solution of BVP (3), (2).

We will introduce the following assumption:
(H) The function F is Lipshitz, i.e., |F (n, x)−F (n, y)| ≤ L|x− y|, x, y ∈ R,

n ∈ Z[a, b] with |α| > Lb−a|β|.

Theorem 3.1. Let the condition (H) be satisfied. Then the BVP (3), (2) is
modified Ulam–Hyers stable.

Proof. Let ε > 0 be an arbitrary given number. Let y(n), n ∈ Z[a, b] be a
solution of the inequalities (8) and z(n), n ∈ Z[a, b] be the unique solution of
BVP (3), (2). According to Remark 3.2 the equalities (9) hold.

We denote |z(a)− y(a)| = A, apply induction, condition (H) and equalities
(9) and obtain

|z(a+ 1)− y(a+ 1)| ≤ |F (a+ 1, z(a))− F (a+ 1, y(a))|+ |h(a+ 1)|
≤ LA+ ε,

|z(a+ 2)− y(a+ 2)| ≤ L|z(a+ 1)− y(a+ 1)|+ ε ≤ L2A+ (1 + L)ε,

|z(a+ 3)− y(a+ 3)| ≤ L|z(a+ 2)− y(a+ 2)|+ ε

≤ L3A+ (1 + L+ L2)ε,

. . . . . . . . .

|z(k)− y(k)| ≤ Lk−aA+ ε

k−a−1∑
i=0

Li = Lk−aA+ ε
1− Lk−a

1− L
,

k ∈ Z[a+ 1, b],

. . . . . . . . .

|z(b)− y(b)| ≤ L|z(b− 1)− y(b− 1)|+ ε

≤ Lb−aA+ ε

b−a−1∑
i=0

Li = Lb−aA+ ε
1− Lb−a

1− L
.

(11)

Then from the boundary condition we get

A = |z(a)− y(a)| =
∣∣∣∣βα (z(b)− y(b)) +

Kn

α

∣∣∣∣ ≤ ∣∣∣βα ∣∣∣ |z(b)− y(b)|+ |Kn|
|α|

≤
∣∣∣β
α

∣∣∣ |z(b)− y(b)|+ ε

|α|
,

and by (11)

|z(b)− y(b)| ≤ Lb−a

(∣∣∣β
α

∣∣∣ |z(b)− y(b)|+ ε

|α|

)
+ ε

1− Lb−a

1− L
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or

|z(b)− y(b)|
(
1− Lb−a

∣∣∣β
α

∣∣∣) ≤ ε

(
1− Lb−a

1− L
+

Lb−a

|α|

)
.

Therefore,

|z(b)− y(b)| ≤ ε
|α| 1−Lb−a

1−L + Lb−a

|α| − |β|Lb−a

and

A ≤
∣∣∣β
α

∣∣∣(ε |α| 1−Lb−a

1−L + Lb−a

|α| − |β|Lb−a

)
+

ε

|α|

=
1

|α|

(
1 + |β|

|α| 1−Lb−a

1−L + Lb−a

|α| − |β|Lb−a

)
ε.

(12)

From inequalities (11) and (12) we get

|z(k)− y(k)| ≤

(
Lk−a 1

|α|

(
1 + |β|

|α| 1−Lb−a

1−L + Lb−a

|α| − |β|Lb−a

)
+

1− Lk−a

1− L

)
ε,

k ∈ Z[a+ 1, b],

which proves the modified Ulam–Hyers stability with the constants

Ck = Lk−a 1

|α|

(
1 + |β|

|α| 1−Lb−a

1−L + Lb−a

|α| − |β|Lb−a

)
+

1− Lk−a

1− L
, k ∈ Z[a, b]. (13)

□

Remark 3.3. In the case L = 1 we have Ck = k − a + 1 + |β| b−a+1
|α|−|β| in the

proof of Theorem 3.1.

In the case L ̸= 1 we have Ck = Lk−a
(
1 + |β| 1−Lb−a+1

(1−L)|α|−Lb−a|β|

)
+ 1−Lk−a

1−L in

the proof of Theorem 3.1.

Example 3.2. Consider BVP (6) with a unique solution given in Table 1.
The function F (n, x) = 0.5 x

1+nx is Lipschitz with a constant L = 0.5 and

the inequality |α| − Lb−a|β| = 1− 2 ∗ 0.52 = 0.5 < 1 holds, i.e., condition (H)
is satisfied.

According to Eq. (13) we have C0 = 5.5, C1 = 3.75, C2 = 2.875, C3 =
2.4375, C4 = 2.21875.

Now, let ε > 0 be an arbitrary number and consider the inequalities∣∣∣∣y(n)− 0.5
y(n− 1)

1 + ny2(n− 1)

∣∣∣∣ ≤ ε for n = 1, 2, |y(0)− 2y(2)− 1| ≤ ε. (14)



ULAM STABILITY FOR BOUNDARY VALUE PROBLEMS 37

1 2 3 4

0.5

1.0

1.5

2.0

ϵ=0.1

ϵ=0.5

Figure 1. Graph of the solutions of (14) for ε = 0.1, ε = 0.5.

Let ε = 0.1 and we will obtain one possible solution of the inequalities
(14). We could not proceed as in Example 3.1, and so we denote y(0) = B
and obtain y(1), y(2), y(3), y(4) as functions of B. Then from the boundary
condition B − 2y(4) + 1− 0.5 ∗ 0.1 we obtain the only real value B ≈ 1.27189
and one solution of (14) (see Table 3).

Let ε = 0.5 and we will obtain one possible solution of the inequalities (14).
We could not proceed as in Example 3.1, and therefore we denote y(0) = B
and obtain y(1), y(2), y(3), y(4) as functions of B. Then from the boundary
condition B − 2y(4) + 1 − 0.5 ∗ 0.5 we obtain the only real value B ≈ 1.9919
and one solution of (14) (see Table 3 and Figure 1).

Table 3. Values of the solution of inequalities (14).

Solution ε = 0.1 ε = 0.5
y(0) 1.27189 1. 9919
y(1) 0.29294 0.450486
y(2) 0.175014 0.410216
y(3) 0.130143 0.3863
y(4) 0.110943 0.370952

Compare the differences |x(n)−y(n)| for n = 0, 1, 2, 3, 4 (see Table 4, Figure
2, Figure 3).
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Table 4. Solution of BVP (6), inequalities (14) for various ε
and the bounds εCn.

n BVP (6) (14) with ε = 0.1 0.1Cn (14) with ε = 0.5 0.5Cn

0 1.05291 1.27189 0.55 1. 9919 2.75
1 0.249668 0.29294 0.375 0.450486 1.875
2 0.110996 0.175014 0.2875 0.410216 1.4375
3 0.110996 0.130143 0.24375 0.3863 1.21875
4 0.0264569 0.110943 0.221875 0.370952 1.10938

1 2 3 4

0.1

0.2

0.3

0.4

0.5

|x(n)-y(n)|

ϵ C(n)

Figure 2. Graphs of the difference between the solution of
BVP (6) and the particular solution of of (14) for ε = 0.1 and
the bound εC(n).

From Table 4, Figure 2 and Figure 3 it could be seen that the given particular
solution of inequalities (14) satisfies inequalities (10), i.e., they illustrate the
modified Ulam–Hyers stability for the BVP (6).

4. Conclusion

In this paper we suggest a way to study correctly Ulam–Hyers stability for
boundary value problems for difference equations. We consider not only the
corresponding difference inequality but also we combine it with an appropriate
inequality for the boundary condition. We define modified Ulam–Hyers stabil-
ity and obtain sufficient conditions. The theoretical study is illustrated with
examples.
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1 2 3 4

0.5

1.0

1.5

2.0

2.5

|x(n)-y(n)|

ϵ C(n)

Figure 3. Graph of the difference between the solution of
BVP (6) and the particular solution of (14) for ε = 0.5 and
the bound εC(n).
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Гранична задача за диференчни уравнения и устойчивост на
Улам-Хайърс

Снежана Христова

Резюме. В статията е дискутирана устойчивост на Улам-Хайърс за гранична
задача за диференчни уравнения и са посочени някои неточности в литература-
та. Предложен е нов подход за приложение на Улам-Хайърс устойчивостта за
гранични задачи, който да избягва тези неточности. Класическото диференчно
неравенство е комбинирано с неравенство за граничните условия. Този подход
не запазва основната идея на устойчивостта на Улам, защото решението на да-
дената задача е фиксирано и то трябва да е достатъчно близко до всяко решение
на съответното неравенство. Във връзка с това, се дефинира по подходящ начин
модифицирана устойчивост на Улам и са получени достатъчни условия за нея.
Теоретичните резултати са илюстрирани с няколко примера.
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