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MANIFOLDS

SOFIA DUCHEVA AND MARTA TEOFILOVA∗

Communicated by IVA DOKUZOVA

Abstract. Examples of complex manifolds with Norden metric are pre-

sented. Two-dimensional Kähler Norden manifolds are obtained as real

interpretation of smooth curves in the complex plane. Examples of Nor-
den manifolds with abelian complex structure are constructed on Lie

groups and Lie algebras.

1. Introduction

Smooth manifolds with additional tensor structures of type (1,1) and com-
patible pseudo-Riemannian metric are subject of intensive scientific research.
It is well known that on an almost complex manifold, there exists a Riemannian
metric compatible with the almost complex structure in such a way that in the
tangent space at each point of the manifold an isometry arises. Such manifolds
are called almost Hermitian. On the other hand, the Russian geometer A. P.
Norden [9, 10] defined another kind of metric on an almost complex manifold,
termed by him B-metric, which is compatible with the almost complex struc-
ture in such a manner that an anti-isometry is induced. Norden introduced and
studied manifolds endowed with B-metric and complex structure parallel with
respect to the Levi-Civita connection called by him B-manifolds (also known as
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Kähler manifolds with B-metric). Later, this metric is termed Norden metric
and such manifolds are studied by many authors under different names: almost
complex manifolds with Norden metric, almost complex Norden manifolds or
almost anti-Hermitian manifolds.

The systematic research on almost complex manifolds with Norden metric
was initiated by K. Gribachev, D. Mekerov and G. Djelepov in [6] where these
manifolds are called Generalized B-manifolds. In the same work, the first
incomplete classification of these manifolds is presented. The first complete
classification with respect to the covariant derivative of the almost complex
structure is introduced by G. Ganchev and A. Borisov in [4]. This classification
consists of three basic classes whose intersection is the class of the Kähler
manifolds.

Many examples of almost complex Norden manifolds have emerged in the
scientific literature. Among the first ones presented are the examples by G.
Ganchev, K. Gribachev and V. Mihova in [5], and by R. Castro, L. M. Hervella,
E. Garćıa-Ŕıo in [1].

In this article, we consider almost complex manifolds with Norden metric
with zero Nijenhuis tensor of the almost complex structure. In this case the
almost complex structure is said to be integrable, i.e. it is a complex structure.
The aim of this work is to construct examples of such manifolds and to study
their geometric properties. The article is organized as follows. In section 2,
we give basic information about almost complex Norden manifolds. In section
3, we present examples of flat 2-dimensional Kähler manifolds obtained as real
interpretation of smooth curves in the complex plane. In section 4, we present
examples of manifolds with Norden metric and abelian complex structure con-
structed on Lie groups and Lie algebras. The manifolds are in the classes W1

and W1 ⊕W2 of the Ganchev-Borisov classification.

2. Preliminaries

LetM be a differentiable manifold with real dimension dimM = 2n. Smooth
vector fields in X(M) and vectors in the tangent space TpM , p ∈ M , will be
denoted by X,Y, Z,W .

The manifold (M,J, g) is called an almost complex Norden manifold (almost
complex manifold with Norden metric) if J is an almost complex structure, and
g is a pseudo-Riemannian metric, called Norden metric, such that

J2 = −id, g(JX, JY ) = −g(X,Y ) (2.1)

for all X,Y ∈ X(M).
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The tensor field

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ] (2.2)

is called the Nijenhuis tensor of J . The almost complex structure J is said
to be integrable if N = 0. According to [8], an almost complex structure is
complex if and only if N = 0.

Since (2.1) yield g(X,JY ) = g(JX, Y ), the tensor field g̃ defined by

g̃(X,Y ) = g(X, JY ), (2.3)

also possesses the Norden metric property. The metric g̃ is called the associated
metric of g (twin metric). Both metrics are necessarily of neutral signature
(n, n).

The fundamental tensor field F of type (0,3) is defined by

F (X,Y, Z) = g ((∇XJ)Y,Z) , (2.4)

where ∇ is the Levi-Civita connection of g, and has the following properties:

F (X,Y, Z) = F (X,Z, Y ), F (X, JY, JZ) = F (X,Y, Z). (2.5)

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis in TpM , p ∈ M , and (gij)
be the inverse matrix of (gij). Then, the 1-forms θ and θ∗ associated with F
are defined by

θ(Z) = gijF (ei, ej , Z), θ∗ = θ ◦ J. (2.6)

A classification of the almost complex Norden manifolds with respect to the
covariant derivative of J , i.e. to F , is introduced by G. Ganchev and A. Borisov
in [4]. This classification consists of three basic classes Wi (i = 1, 2, 3) and their
direct sums Wi⊕Wj (i ̸= j). The special class of the Kähler Norden manifolds
W0 is contained in all other classes. In our work, we consider only the classes
of complex Norden manifolds which are:

1. The class W0 of the Kähler Norden manifolds

F (X,Y, Z) = 0 ⇔ ∇J = 0; (2.7)

2. The class W1

F (X,Y, Z) = 1
2n

{
g(X,Y )θ(Z) + g(X,Z)θ(Y ) + g(X, JY )θ(JZ)

+g(X, JZ)θ(JY )
}
;

(2.8)

3. The class W2 of the special complex Norden manifolds

F (X,Y, JZ)+F (Y, Z, JX)+F (Z,X, JY ) = 0, θ = 0 ⇔ N = 0, θ = 0;
(2.9)

4. The class W1 ⊕W2 of the complex Norden manifolds

F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0 ⇔ N = 0. (2.10)
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The curvature tensor R of type (1,3) of the Levi-Civita connection ∇ is
defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, (2.11)

and the corresponding (0,4)-tensor is given by

R(X,Y, Z,W ) = g
(
R(X,Y )Z,W

)
. (2.12)

The Ricci tensor ρ and the scalar curvature of the manifold are computed by

ρ(X,Y ) = gijR(ei, X, Y, ej), τ = gijρ(ei, ej). (2.13)

3. Curves in 2-dimensional complex space and their real
interpretation as flat Kähler Norden manifolds

Let z (z1, z2, ..., zn), zk = xk + iyk, xk, yk ∈ R (k = 1, 2, .., n), be a vector
in the n-dimensional complex space Cn. Here, by i we denote the imaginary
unit (i2 = −1). The standard mapping (identification) between Cn and R2n is
defined by [9, 10]

φ : z (z1, z2, ..., zn) ∈ Cn −→ φ(z) = Z(x1, x2, ..., xn; y1, y2, ..., yn) ∈ R2n.

By this mapping the transformation J0 in Cn defined by z → iz induces a
complex structure J in R2n given by J = φ J0 φ−1 which is called canonical.
The canonical complex structure is determined by the matrix(

0 In
−In 0

)
,

where In is the square unit matrix.
Consider the Euclidean scalar product G0 in Cn which is the complex lin-

earization of the natural scalar product in Rn, i.e. G0(z, z) = z21 + z22 + ...+ z2n.
Then, G0 induces two metrics on R2n [5]: g = Re G0 and g̃ = −Im G0. If
Z(x1, ..., xn; y1, ..., yn) ∈ R2n then

g(Z,Z) = x2
1 + ...+ x2

n − y21 − ...− y2n,

g̃(Z,Z) = −2(x1y1 + ...+ xnyn).
(3.1)

Both metrics g and g̃ satisfy the second equation in (2.1) and hence they are
Norden metrics.

The images by φ of the vectors in the standard basis of Cn and their J-
associated vectors form the so called adapted basis (J-basis) of R2n, i.e. the
basis {e1, ..., en; Je1, ..., Jen} such that

g(ej , ek) = −g(Jej , Jek) = δjk, g(ej , Jek) = 0, j, k = 1, 2, ..., n.
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The vector space R2n endowed with the scalar product rule g defined by
(3.1) is called a pseudo-Euclidean 2n-dimensional vector space with signature
(n, n) and is denoted by R2n

(n,n).

3.1. Real interpretation of curves in C2 as 2-dimensional flat Kähler
Norden manifolds. In this section we consider smooth curves in C2 and their
real interpretation as 2-dimensional surfaces in R4

(2,2).

Let OE1E2 be a coordinate system in C2, where {E1, E2} is the standard
basis of C2, and let c : r(z1, z2) be a smooth curve in C2 with zk = xk + iyk
(k = 1, 2). The functions z1 = z1(z) and z2 = z2(z) are analytic functions of
one complex variable z = u+ iv, where u, v ∈ R. Hence, the pairs of functions
(x1, y1) and (x2, y2) satisfy the Cauchy–Riemann equations, i.e.

∂xk

∂u
=

∂yk
∂v

,
∂xk

∂v
= −∂yk

∂u
, k = 1, 2. (3.2)

The standard mapping φ between C2 and R4 maps the vector r(z1, z2) ∈ C2

in the vector r(x1, x2; y1, y2) ∈ R4
(2,2) with respect to the adapted basis, i.e. the

basis {e1, e2, Je1, Je2}. The equation

M2 : r = r(x1(u, v), x2(u, v); y1(u, v), y2(u, v)) (3.3)

defines a 2-dimensional smooth surface M2 in R4
(2,2). The basis of the tangent

space TpM
2, p ∈ M2, is defined by the vectors r1 = ∂r

∂u and r2 = ∂r
∂v .

Let J be the canonical complex structure in R4. Due to the Cauchy-Riemann
equations (3.2), we obtain Jr1 = r2 and Jr2 = −r1. Hence, the restriction of
J on TpM

2 is defined by

J1
1 = J2

2 = 0, J2
1 = −J1

2 = 1. (3.4)

Also, due to (3.2) and (3.1), we have g11 = −g22, i.e. g satisfies the Norden
metric property. Thus, the manifold (M2, J, g) is a 2-dimensional complex
Norden manifold.

We prove the following

Theorem 3.1. The 2-dimensional manifold (M2, J, g) defined by (3.3) which
is the real interpretation in R4

(2,2) of a smooth curve in C2 is a Kähler Norden

manifold.

Proof. From the Cauchy-Riemann equations (3.2) it follows that

∂g11
∂u

= −∂g12
∂v

,
∂g11
∂v

=
∂g12
∂u

. (3.5)
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Then, having in mind the formula for the Christoffel symbols of the Levi-Civita
connection of g, i.e.

Γs
jk = 1

2g
sl (∂jgkl + ∂kgjl − ∂lgjk) ,

where ∂jgkl =
∂gkl

∂uj , and u1 = u, u2 = v, we prove that

Γ1
11 = −Γ1

22 = Γ2
12, Γ1

12 = −Γ2
11 = Γ2

22. (3.6)

To calculate the components of ∇J we use the formula ∇jJ
s
k = ∂jJ

s
k−Γm

jkJ
s
m+

Γs
jmJm

k . Then, by (3.4) and (3.6), we obtain ∇jJ
s
k = 0 for all j, k, s = 1, 2. □

We remark that every 2-dimensional Kähler Norden manifold is flat, i.e.
with zero curvature tensor. The proof goes as follows. Let {e1, e2 = Je1} be
the adapted basis of the manifold. Then, the unique essential component of
the curvature tensor of type (0,4) is R1221 = R(e1, e2, e2, e1). As it is known
[5], the curvature tensor of a Kähler Norden manifold satisfies the Kählerian
property which is R(X,Y, JZ, JW ) = −R(X,Y, Z,W ). Due to this property,
it follows that R(e1, e2, e2, e1) = 0.

3.2. Explicit examples of curves in C2 as 2-dimensional flat Kähler
Norden manifolds. We present three concrete examples of second degree
curves to illustrate the results in the previous subsection.

Example 3.1. Consider a circle in C2 with equation

z21 + z22 = r2, (3.7)

where r = a + ib, a, b ∈ R. From the standard parametrization z1 = r cos z,
z2 = r sin z, having in mind that zk = xk + iyk, and z = u+ iv, we obtain that
the real interpretation of the complex circle (3.7) is the surface in R4

(2,2) given

by

S2 :

∣∣∣∣∣∣∣∣
x1 = a cosu cosh v + b sinu sinh v
x2 = a sinu cosh v − b cosu sinh v
y1 = −a sinu sinh v + b cosu cosh v
y2 = a cosu sinh v + b sinu cosh v.

(3.8)

To study the geometric properties of S2, we compute the basis of the tangent
space {r1, r2} and the components of the metric gjk, having in mind the scalar
product rule (3.1). Thus, we get

g11 = −g22 = a2 − b2, g12 = g21 = −2ab. (3.9)

Since all components gjk are constant, we obtain Γl
jk = 0 for all j, k, l = 1, 2.

The real interpretation of the complex circle in R4
(2,2) is the surface S2 with a

flat Levi-Civita connection.
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Example 3.2. Consider a rectangular hyperbola in C2 given by

z21 − z22 = r2, (3.10)

where r = a + ib, a, b ∈ R. The standard parametrization is z1 = r cosh z,
z2 = r sinh z, where cosh z and sinh z are the hyperbolic functions of z = u+iv.
The 2-dimensional surface which is the real interpretation of the hyperbola is
given by

H2 :

∣∣∣∣∣∣∣∣
x1 = a coshu cos v − b sinhu sin v
x2 = a sinhu cos v − b coshu sin v
y1 = a sinhu sin v + b coshu cos v
y2 = a coshu sin v + b sinhu cos v.

(3.11)

We compute the components gjk as follows:

g11 = −g22 = (a2 − b2) cosh 2u cos 2v − 2ab sinh 2u sin 2v,

g12 = g21 = −(a2 − b2) sinh 2u sin 2v − 2ab cosh 2u cos 2v.
(3.12)

Then, the Christoffel symbols are given by

Γ1
11 = −Γ1

22 = Γ2
12 =

sinh 4u

cosh 4u+ cos 4v
,

Γ1
12 = −Γ2

11 = Γ2
22 = − sin 4v

cosh 4u+ cos 4v
. (3.13)

Example 3.3. Consider the parabola in C2 given by

z22 = z1. (3.14)

Its real interpretation is the surface

P 2 : r(u2 − v2, u, 2uv, v). (3.15)

Analogously, we compute the components gjk

g11 = −g22 = 4u2 + 1− 4v2,
g12 = g21 = −8uv,

(3.16)

and the Christoffel symbols

Γ1
22 = −Γ1

11 = −Γ2
12 = 4u

g

(
1 + 4u2 + 4v2

)
,

Γ2
11 = −Γ1

12 = −Γ2
22 = 4v

g

(
4u2 + 4v2 − 1

)
.

(3.17)

Considering the surfaces in examples 3.2 and 3.3, by (3.13) and (3.17), one
can verify that ∇J = 0 and R1221 = 0 for both manifolds (H2, J, g) and
(P 2, J, g).
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4. Lie groups as Complex Norden manifolds

In this section, following ideas from [1, 7], we construct and study four
examples of complex Norden manifolds on Lie groups.

Let G be a real connected 2n-dimensional Lie group, and let g be its asso-
ciated Lie algebra. If {X1, X2, ..., X2n} is a basis of left-invariant vector fields
on G, we endow G with an almost complex structure J and a Norden metric g
in the following way

JXi = Xn+i, JXn+i = −Xi, i = 1, 2, .., n; (4.1)

g(Xi, Xi) = −g(Xn+i, Xn+i) = 1, i = 1, 2, .., n,

g(Xi, Xj) = 0, i ̸= j, i, j = 1, 2, ..., 2n.
(4.2)

Then, (G, J, g) is an almost complex Norden manifold.
The almost complex structure J on G is called abelian if

[JX, JY ] = [X,Y ] for all X,Y ∈ g. (4.3)

If the structure is abelian, then the Nijenhuis tensor N = 0 and thus (G, J, g)
is a complex Norden manifold. In [3], it is proved that if a real Lie algebra g
admits an abelian complex structure then g is solvable (more precisely, 2-step
solvable).

Example 4.1. Consider the real 2-dimensional Lie group G2 defined by

G2 =

{(
ex y
0 1

)
| x, y ∈ R

}
. (4.4)

The left-invariant vector fields on G2 are

X1 =
∂

∂x
, X2 = ex

∂

∂y
. (4.5)

Then, the associated Lie algebra g2 of G2 is defined by

g2 : [X1, X2] = X2. (4.6)

Hence, the structure J on G2 defined by (4.1) is abelian which yields that
(G2, J, g) is a complex Norden manifold.

By help of the Koszul formula

2g (∇XY,Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y )

+g ([X,Y ], Z) + g ([Z,X], Y ) + g ([Z, Y ], X) ,
(4.7)

we compute the non-zero components ∇Xi
Xj (i, j = 1, 2) of the Levi-Civita

connection

∇X2
X2 = −X1, ∇X2

X1 = −X2. (4.8)
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Denote the components of the fundamental tensor F by Fijk = F (Xi, Xj , Xk).
Then, having in mind (2.4) and (4.8), we obtain the following non-zero com-
ponents

F211 = F222 = −2. (4.9)

By (2.6), the components θi = θ(Xi) of the 1-form θ are

θ1 = 0, θ2 = 2. (4.10)

Then, having in mind the characteristic condition (2.8) of the class W1 we
prove the following

Proposition 4.1. The 2-dimensional almost complex Norden manifold (G2, J, g)
defined by (4.4) with corresponding Lie algebra g2 given by (4.6) belongs to the
class W1.

Proof. Taking into account the components Fijk and θi from (4.9) and (4.10),
we check that for all essential components of F the characteristic condition
(2.8) holds. Thus, (G, J, g) is in the class W1. □

Let us remark that in [1, 2] examples of 2-dimensional manifolds conformally
equivalent to Kähler manifolds are studied. Such manifolds are in the class W1

with closed 1-forms θ and θ∗. On the manifold which we consider only θ∗ is
closed.

Example 4.2. Let us generalize the idea of the previous example by consid-
ering the 2n-dimensional Lie group

G2n =




ex1 0 ... 0 xn+1

0 ex2 ... 0 xn+2

... ... ... ... ...

0 0 ... exn x2n

0 0 ... 0 1

 | x1, x2, ..., x2n ∈ R


. (4.11)

The left-invariant vector fields on G2n are

Xi =
∂

∂xi
, Xi+n = exi

∂

∂xi+n
, i = 1, 2, ..., n. (4.12)

The associated Lie algebra g2n is defined by the following commutator relations

g2n : [Xi, Xi+n] = Xi+n, i = 1, 2, ..., n. (4.13)

The non-zero components of the Levi-Civita connection are given by

∇Xi+n
Xi = −Xi+n, ∇Xi+n

Xi+n = −Xi. (4.14)
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The non-zero essential components of the tensor F and its associated 1-forms
are given by

F (Xi+n, Xi, Xi) = −2, θi+n = θ∗i = 2. (4.15)

We check that the manifold does not meet the characteristic criteria for the
classes W1 or W2. Hence, we proved

Proposition 4.2. The manifold (G2n, J, g) defined by (4.11) with correspond-
ing Lie algebra g2n given by (4.13) belongs to the class W1 ⊕W2.

Further, we study the curvature properties of (G2n, J, g) by computing the
non-zero essential components of the curvature tensorRijkl = R(Xi, Xj , Xk, Xl)
and the Ricci tensor ρij = ρ(Xi, Xj), and the scalar curvature:

R(Xi, Xi+n, Xi+n, Xi) = 1,

ρ(Xi, Xi) = −ρ(Xi+n, Xi+n) = −1, τ = −2n.
(4.16)

By (4.16) and (4.2) it follows that ρ = − τ
2ng. Hence, we prove

Proposition 4.3. The complex Norden manifold (G2n, J, g) defined by (4.11)
and (4.13) is an Einsteinian manifold.

Let us remark that the Lie algebras (4.6) and (4.13) are particular cases
of families of 2n-dimensional Lie algebras depending on 2n real parameters
studied in [11].

Example 4.3. Consider the 4-dimensional Lie group defined by

G4 =


1 x y
0 1 z
0 0 et

 | x, y, z, t ∈ R

 . (4.17)

Is we set t = 0 for all x, y, z ∈ R then the Heisenberg group is obtained.
The left-invariant vector fields on G4 are

X1 =
∂

∂x
, X2 = x

∂

∂y
+

∂

∂z
, X3 =

∂

∂y
, X4 = y

∂

∂y
+ z

∂

∂z
+

∂

∂t
. (4.18)

Then, the associated Lie algebra g4 of G4 is defined by the following non-zero
commutator relations

g4 : [X1, X2] = [X3, X4] = X3, [X2, X4] = X2. (4.19)

From (4.19) it follows that the almost complex structure J on G4 defined by
(4.1) is abelian and thus, (G4, J, g) is a complex Norden manifold.
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By (4.7) and (4.19) the non-zero essential components of the Levi-Civita
connection are given by:

∇X2X2 = −∇X3X3 = X4, ∇X1X2 = 1
2X3, ∇X1X3 = 1

2X2,

∇X2
X3 = − 1

2X1, ∇X2
X4 = X2, ∇X3

X4 = X3.
(4.20)

The non-zero essential components of the fundamental tensor F and its asso-
ciated Lie 1-forms are:

F112 = 1
2 , F211 = −1, F222 = 2, F314 = 3

2 ,

θ2 = −θ∗4 = 4.
(4.21)

From the last equations, we check that the manifold does not satisfy the char-
acteristic conditions of the classes W1 or W2. Thus, we prove

Proposition 4.4. The manifold (G4, J, g) defined by (4.17) is in the class
W1 ⊕W2.

Having in mind (4.20), the essential non-zero components of the curvature
tensor, the Ricci tensor and the scalar curvature are

R1221 = −R2332 = 3
4 , R1331 = 1

4 , R2442 = −R3443 = −1, R1234 = − 1
2

ρ11 = 1
2 , ρ22 = 5

2 , ρ33 = − 3
2 , ρ44 = −2, τ = 13

2 .

Example 4.4. Consider the 4-dimensional Lie group defined by

G′
4 =




ey cos z ey sin z x 0
−ey sin z ey cos z t 0

0 0 1 0
0 0 0 ez

 | x, y, z, t ∈ R

 . (4.22)

The left-invariant vector fields on G′
4 are

X1 = ey cos z ∂
∂x − ey sin z ∂

∂t , X2 = ∂
∂z ,

X3 = ∂
∂y , X4 = ey sin z ∂

∂x + ey cos z ∂
∂t .

(4.23)

Then, the associated Lie algebra g′4 of G′
4 is defined by the following non-zero

commutator relations

g′4 : [X1, X2] = [X3, X4] = X4, [X1, X3] = −[X2, X4] = −X1. (4.24)

The almost complex structure J on G′
4 defined by (4.1) is abelian and hence

(G′
4, J, g) is a complex Norden manifold.
By (4.7) and (4.24) the non-zero essential components of the Levi-Civita

connection are given by:

∇X1
X1 = −∇X4

X4 = −X3, ∇X1
X2 = −∇X4

X3 = X4,

∇X1
X3 = ∇X4

X2 = −X1, ∇X1
X4 = ∇X4

X1 = X2.
(4.25)
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Then, by (4.1) and (4.25) we compute the non-zero components of the covariant
derivative of ∇J :

(∇X1
J)X1 = −(∇X4

J)X4 = −2X1,

(∇X1J)X2 = −(∇X4J)X3 = 2X2,

(∇X1
J)X3 = (∇X4

J)X2 = 2X3,

(∇X1J)X4 = (∇X4J)X1 = −2X4.

(4.26)

The rest of the components (∇XiJ)Xj are zero. Then, the non-zero essential
components of the fundamental tensor F and its associated Lie 1-forms are:

F122 = −F111 = F414 = 2, θ1 = −θ∗3 = −4. (4.27)

From the last equations, we check that the manifold does not satisfy the char-
acteristic conditions of the classes W1 or W2. Thus, we prove

Proposition 4.5. The manifold (G′
4, J, g) defined by (4.22) is in the class

W1 ⊕W2.

We start studying the curvature properties of (G′
4, J, g) by computing the

non-zero essential components of the curvature tensor Rijkl:

R1221 = −R1331 = −R2442 = R3443 = −R1234 = 1. (4.28)

Then, we check that the curvature tensor of the considered manifold has the
property R(X,Y, JZ, JW ) = R(X,Y, Z,W ). In [11], such tensors are termed
anti-Kähler.

Let us consider the (0,4)-type tensor K defined by

K(X,Y, Z,W ) = −1

4
g
(
(∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z

)
. (4.29)

In [11], is proved that on a complex manifold with Norden metric the curvature
tensor R satisfies the following identity

S
X,Y,Z

{
R(JX, JY, Z,W ) +R(X,Y, JZ, JW )

}
= − S

X,Y,Z
g
(
(∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z

)
,

where S denotes the cyclic sum over three arguments. Thus, having in mind
that the tensor K is anti-symmetric by its first and second pair of arguments,
it follows that in the case when R is anti-Kählerian, the tensor K satisfies the
first Bianchi identity, i.e. is a curvature-like tensor.

Theorem 4.6. The curvature tensor R of the complex manifold (G′
4, J, g) de-

fined by (4.22) has the form

R(X,Y, Z,W ) = −1

4
g
(
(∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z

)
. (4.30)
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Proof. Let X = xiXi, Y = yiXi, Z = ziXi and W = wiXi, x
i, yi, zi, wi ∈ R

(i = 1, 2, 3, 4), be arbitrary vectors in g′4. By (4.26) and (4.29) we obtain

K(X,Y, Z,W ) =
(
x1y3 − x3y1 − x2y4 + x4y2

) (
z1w3 − z3w1 − z2w4 + z4w2

)
−
(
x1y2 − x2y1 + x3y4 − x4y3

) (
z1w2 − z2w1 + z3w4 − z4w3

)
.

Taking into account the components of the curvature tensor (4.28), we get the
same expression for R. Hence, formula (4.30) is valid. □

Having in mind the commutator relations (4.24), in a similar way to the
previous theorem we prove the following

Proposition 4.7. The curvature tensor R of (G′
4, J, g) defined by (4.22) has

the form

R(X,Y, Z,W ) = g ([X,Y ], [Z,W ]) . (4.31)

Let us remark that in [11], an example of a family of 2n-dimensional Lie
algebras with curvature tensor of the form (4.30) and (4.31) is studied.

Further, we compute the non-zero essential components of the Ricci tensor
and the scalar curvature as follows

ρ11 = ρ22 = −ρ33 = −ρ44 = 2, τ = 8. (4.32)

By (4.32) and (4.2) it follows that ρ = 2g and thus we prove

Proposition 4.8. The complex Norden manifold (G′
4, J, g) defined by (4.22)

is an Einstein manifold.

5. Conclusion

In this paper, we have presented and studied examples of 2-, 4- and 2n-
dimensional complex manifolds with Norden metric belonging to three classes
in the classification of Ganchev and Borisov. The examples of Kähler manifolds
are obtained as real interpretations of non-degenerate second degree curves in
the complex plane, and the manifolds in the classes W1 and W1 ⊕ W2 are
constructed on Lie groups and Lie algebras.
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НЯКОИ ПРИМЕРИ НА КОМПЛЕКСНИ НОРДЕНОВИ
МНОГООБРАЗИЯ

София Дучева, Марта Теофилова

Резюме. Представени са примери на комплексни многообразия с норденова
метрика. Получени са двумерни келерови многообразия като реална интерпре-
тация на гладки криви в комплексната равнина. Конструирани са примери на
норденови многообразия с абелева комплексна структура върху групи на Ли и
алгебри на Ли.
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