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ON SOME EXAMPLES OF COMPLEX NORDEN
MANIFOLDS

SOFIA DUCHEVA AND MARTA TEOFILOVA*
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ABSTRACT. Examples of complex manifolds with Norden metric are pre-
sented. Two-dimensional Kihler Norden manifolds are obtained as real
interpretation of smooth curves in the complex plane. Examples of Nor-
den manifolds with abelian complex structure are constructed on Lie
groups and Lie algebras.

1. INTRODUCTION

Smooth manifolds with additional tensor structures of type (1,1) and com-
patible pseudo-Riemannian metric are subject of intensive scientific research.
It is well known that on an almost complex manifold, there exists a Riemannian
metric compatible with the almost complex structure in such a way that in the
tangent space at each point of the manifold an isometry arises. Such manifolds
are called almost Hermitian. On the other hand, the Russian geometer A. P.
Norden [9], [10] defined another kind of metric on an almost complex manifold,
termed by him B-metric, which is compatible with the almost complex struc-
ture in such a manner that an anti-isometry is induced. Norden introduced and
studied manifolds endowed with B-metric and complex structure parallel with
respect to the Levi-Civita connection called by him B-manifolds (also known as
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Kéhler manifolds with B-metric). Later, this metric is termed Norden metric
and such manifolds are studied by many authors under different names: almost
complex manifolds with Norden metric, almost complex Norden manifolds or
almost anti-Hermitian manifolds.

The systematic research on almost complex manifolds with Norden metric
was initiated by K. Gribachev, D. Mekerov and G. Djelepov in [6] where these
manifolds are called Generalized B-manifolds. In the same work, the first
incomplete classification of these manifolds is presented. The first complete
classification with respect to the covariant derivative of the almost complex
structure is introduced by G. Ganchev and A. Borisov in [4]. This classification
consists of three basic classes whose intersection is the class of the Kéhler
manifolds.

Many examples of almost complex Norden manifolds have emerged in the
scientific literature. Among the first ones presented are the examples by G.
Ganchev, K. Gribachev and V. Mihova in [5], and by R. Castro, L. M. Hervella,
E. Garcia-Rio in [I].

In this article, we consider almost complex manifolds with Norden metric
with zero Nijenhuis tensor of the almost complex structure. In this case the
almost complex structure is said to be integrable, i.e. it is a complex structure.
The aim of this work is to construct examples of such manifolds and to study
their geometric properties. The article is organized as follows. In section 2,
we give basic information about almost complex Norden manifolds. In section
3, we present examples of flat 2-dimensional K&hler manifolds obtained as real
interpretation of smooth curves in the complex plane. In section 4, we present
examples of manifolds with Norden metric and abelian complex structure con-
structed on Lie groups and Lie algebras. The manifolds are in the classes W,
and W; @ W, of the Ganchev-Borisov classification.

2. PRELIMINARIES

Let M be a differentiable manifold with real dimension dim M = 2n. Smooth
vector fields in X(M) and vectors in the tangent space T,M, p € M, will be
denoted by X,Y, Z, W.

The manifold (M, J, g) is called an almost complex Norden manifold (almost
complex manifold with Norden metric) if J is an almost complex structure, and
g is a pseudo-Riemannian metric, called Norden metric, such that

J?=—-id, g(JX,JY)=—g(X,Y) (2.1)

for all X,Y € X(M).
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The tensor field
NX,Y)=[JX,JY] - [X,Y] - JJX,Y] - JX,JY] (2.2)

is called the Nijenhuis tensor of J. The almost complex structure J is said
to be integrable if N = 0. According to [8], an almost complex structure is
complex if and only if N = 0.

Since yield (X, JY) = g(JX,Y), the tensor field g defined by

(X, Y)=9(X,JY), (2.3)
also possesses the Norden metric property. The metric g is called the associated
metric of g (twin metric). Both metrics are necessarily of neutral signature
(n7¥l)1;e fundamental tensor field F' of type (0,3) is defined by

(XY, 2) =g ((VxJ)Y,Z), (24)
where V is the Levi-Civita connection of g, and has the following properties:
F(X,)Y,Z2)=F(X,2,Y), F(X,JY,JZ)=F(X,Y, 2). (2.5)

Let {e;} (i = 1,2,...,2n) be an arbitrary basis in T,M, p € M, and (g/)
be the inverse matrix of (g;;). Then, the 1-forms 6 and 6* associated with F
are defined by

0(2) = g"F(e;,e;, 2Z), 0" =00l (2.6)

A classification of the almost complex Norden manifolds with respect to the
covariant derivative of J, i.e. to F, is introduced by G. Ganchev and A. Borisov
in [4]. This classification consists of three basic classes W; (i = 1,2, 3) and their
direct sums W; @ W; (i # j). The special class of the K&hler Norden manifolds
W, is contained in all other classes. In our work, we consider only the classes

of complex Norden manifolds which are:
1. The class Wy of the Kahler Norden manifolds

FX,Y,Z2)=0 & VJ=0; (2.7)
2. The class W,
F(X,Y,2) = ={g(X,V)0(Z) + g(X,2)0(Y) + (X, JY)0(J Z)
+9(X, JZ)&(JY)};
3. The class Wy of the special complex Norden manifolds

F(X,Y,JZ)+F(Y,Z,JX)+F(Z,X,JY)=0, 6=0 < N=0, 6=0;
(2.9)

(2.8)

4. The class Wi @& Wy of the complex Norden manifolds
F(X,Y,JZ)+ F(Y,Z,JX)+ F(Z,X,JY)=0 < N=0. (2.10)



44 S. DUCHEVA, M. TEOFILOVA

The curvature tensor R of type (1,3) of the Levi-Civita connection V is
defined by

R(X,Y)Z =VxVyZ ~VyVxZ —Vixy 7, (2.11)
and the corresponding (0,4)-tensor is given by
R(X.Y,Z,W) = g(R(X,Y)Z,W). (2.12)

The Ricci tensor p and the scalar curvature of the manifold are computed by

p(X,Y) = g"R(e;, X,Y,ej), T =g"ple;, ej). (2.13)

3. CURVES IN 2-DIMENSIONAL COMPLEX SPACE AND THEIR REAL
INTERPRETATION AS FLAT KAHLER NORDEN MANIFOLDS

Let z (21, 22,..,2n), 2k = Tk + Yk, Tk, yx € R (k = 1,2,..,n), be a vector
in the n-dimensional complex space C". Here, by i we denote the imaginary
unit (i2 = —1). The standard mapping (identification) between C™ and R?" is
defined by [9] [10]

Pz (217227 ;Zn) eC" — (p(Z) = Z(xlax% "'axn;ylay%'“vyn) € R?n'

By this mapping the transformation Jy in C™ defined by z — iz induces a
complex structure .J in R?" given by J = ¢ Jy ¢! which is called canonical.
The canonical complex structure is determined by the matrix

0 I,
I, 0 )’

where I, is the square unit matrix.

Consider the Euclidean scalar product Gy in C" which is the complex lin-
earization of the natural scalar product in R", i.e. Go(z,2) = 2% + 23 +... + 22.
Then, Gy induces two metrics on R?" [5]: g = Re Gy and ¢ = —Im Gg. If
Z(ZT1, ooy T3 Y1y ooy Yn) € R2™ then

9(Z,2) =23+ ...+ 22 —yi— . =y,
§(27 Z) = _2(1'1?/1 + ...+ xnyn)
Both metrics g and ¢ satisfy the second equation in (2.1) and hence they are
Norden metrics.
The images by ¢ of the vectors in the standard basis of C" and their J-

associated vectors form the so called adapted basis (J-basis) of R?", i.e. the
basis {e1, ..., en; Je1, ..., Jen } such that

(3.1)

g(€j7e/€) = _g<J€j7J6k) = Ojk; g(ej7‘]6k) = 07 ]7k = 1,2,...,71.
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The vector space R?" endowed with the scalar product rule g defined by
(3.1) is called a pseudo-Euclidean 2n-dimensional vector space with signature
(n,n) and is denoted by R%ﬁin).
3.1. Real interpretation of curves in C? as 2-dimensional flat Kihler
Norden manifolds. In this section we consider smooth curves in C? and their
real interpretation as 2-dimensional surfaces in R‘(LZ 2)-

Let OE1E; be a coordinate system in C2, where {E7, E;} is the standard
basis of C2, and let ¢ : r(z1, z2) be a smooth curve in C? with 2z, = x) + iy
(k =1,2). The functions z; = 21(z) and z3 = 25(2) are analytic functions of
one complex variable z = u + iv, where u,v € R. Hence, the pairs of functions
(21,y1) and (z2,y2) satisfy the Cauchy—Riemann equations, i.e.

9] 0 19) 9]
9o _OYk 0Tk _ Ok 19 (3.2)
ou Ov v ou

The standard mapping ¢ between C? and R* maps the vector (21, 22) € C?
in the vector r(x1, x2;y1,y2) € R?ZZ) with respect to the adapted basis, i.e. the
basis {e1, e2, Jey, Jea}. The equation

M?:r = r(z1(u,v), 22(u,v); y1 (4, v), y2 (u,v)) (3.3)
defines a 2-dimensional smooth surface M? in R‘é 2" The basis of the tangent

space T,M?, p € M?, is defined by the vectors r; = % and r9 = %.

Let J be the canonical complex structure in R*. Due to the Cauchy-Riemann
equations (3.2)), we obtain Jr; = ro and Jry = —ry. Hence, the restriction of
J on T, M? is defined by

Jl=J2=0Ji=-J3=1 (3.4)

Also, due to and (3.1), we have g1 = —goo, i.e. g satisfies the Norden
metric property. Thus, the manifold (M?2,J,g) is a 2-dimensional complex
Norden manifold.

We prove the following

Theorem 3.1. The 2-dimensional manifold (M?,J,g) defined by which
is the real interpretation in R?w) of a smooth curve in C? is a Kdhler Norden
manifold.

Proof. From the Cauchy-Riemann equations (3.2)) it follows that

911 _ 9912 g1 _ 9912
ou  Ov’' Ov  Ou’ (3:5)
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Then, having in mind the formula for the Christoffel symbols of the Levi-Civita
connection of g, i.e.
I = 39° (0;9r + Okgsi — Oigsn) ,

Ogki
oud ?

Fh = _F%2 = F%m F}2 = _I% = F%z' (3.6)
To calculate the components of V.J we use the formula V; Ji; = 9;J; —I'7} J5, +
I3, Ji. Then, by (3.4) and (3.6), we obtain V;Ji = 0 for all j,k,s =1,2. O

where 0911 = and u! = u, u? = v, we prove that

We remark that every 2-dimensional K&hler Norden manifold is flat, i.e.
with zero curvature tensor. The proof goes as follows. Let {ej,es = Jeyi} be
the adapted basis of the manifold. Then, the unique essential component of
the curvature tensor of type (0,4) is Ri221 = R(e1,ea,ea,e1). As it is known
[B], the curvature tensor of a Kahler Norden manifold satisfies the K&hlerian
property which is R(X,Y,JZ, JW) = —R(X,Y,Z,W). Due to this property,
it follows that R(ey,es,e2,¢1) = 0.

3.2. Explicit examples of curves in C? as 2-dimensional flat Kihler
Norden manifolds. We present three concrete examples of second degree
curves to illustrate the results in the previous subsection.

Example 3.1. Consider a circle in C? with equation
2422 =12, (3.7)

where r = a + tb, a,b € R. From the standard parametrization z; = rcos z,
Zo = rsin z, having in mind that zx = xy + iyx, and z = u + iv, we obtain that
the real interpretation of the complex circle is the surface in R‘(lzﬁz) given
by

x1 = acosucosh v 4+ bsinusinh v
ro9 = asinucoshv — bcosusinhv
y1 = —asinusinh v 4+ b cos u cosh v
Yo = a cosusinh v + bsinu coshv.

S% (3.8)

To study the geometric properties of S?, we compute the basis of the tangent
space {r1,72} and the components of the metric g;x, having in mind the scalar
product rule (3.1)). Thus, we get

g11=—ga2 = a’> = b*,  gia =g = —2ab. (3.9)
Since all components g, are constant, we obtain Fék =0 for all j,k,1 =1,2.

The real interpretation of the complex circle in R?z.z) is the surface S? with a
flat Levi-Civita connection.
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Example 3.2. Consider a rectangular hyperbola in C? given by
=2y =1 (3.10)

where 7 = a + ¢b, a,b € R. The standard parametrization is z; = rcosh z,
zo = rsinh z, where cosh z and sinh z are the hyperbolic functions of z = u+iv.
The 2-dimensional surface which is the real interpretation of the hyperbola is
given by

1 = acoshucosv — bsinhusinv
To = asinhucosv — bcoshusinv

2,
= y1 = asinhusinv + bcosh u cosv (3.11)
1o = a coshusinv + bsinh u cosv.
We compute the components g;;, as follows:
g11 = —goa = (a? — b?) cosh 2u cos 2v — 2ab sinh 2u sin 2v, (3.12)
g12 = go1 = —(a® — b?) sinh 2u sin 2v — 2ab cosh 2u cos 2v. ’
Then, the Christoffel symbols are given by
inh 4u
b pl o2 _ sin
1 2 127 cosh4u 4 cos4v’
in 4v
I, =-r12 =1%=—— 2% 3.13
12 = 22 cosh 4u + cos 4v ( )
Example 3.3. Consider the parabola in C? given by
23 = 2. (3.14)
Its real interpretation is the surface
P?:r(u® — o2, u, 2uv, v). (3.15)
Analogously, we compute the components g,
e — 102 A2
g11 = —go2 = du” + 1 — 4v7, (3.16)
912 = g21 = —8uv,
and the Christoffel symbols
F12:_F11:_F2 :4771 1+4U2+4/U2 5
2 ' = ) (3.17)

[} = Ty = —T3 = 2 (4> + 4% - 1).

Considering the surfaces in examples 3.2 and 3.3, by (3.13) and (3.17)), one
can verify that VJ = 0 and Rjg9; = 0 for both manifolds (H?,.J,g) and
(P, J,9).
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4. LIE GROUPS AS COMPLEX NORDEN MANIFOLDS

In this section, following ideas from [l [7], we construct and study four
examples of complex Norden manifolds on Lie groups.

Let G be a real connected 2n-dimensional Lie group, and let g be its asso-
ciated Lie algebra. If {X7, Xs, ..., X2, } is a basis of left-invariant vector fields
on GG, we endow G with an almost complex structure J and a Norden metric g
in the following way

JXL = Xn+i, JXn+i = —XZ', 1= 172, .y 15 (41)
Q(Xqu) = _g(Xn-l—iaXn-‘ri) = 17 1= 172a -y T,
9(Xi X;) =0, i#j, ij=12 . 2n.

Then, (G, J, g) is an almost complex Norden manifold.
The almost complex structure J on G is called abelian if

[JX,JY]=[X,Y] forall X,Y €g. (4.3)

If the structure is abelian, then the Nijenhuis tensor N = 0 and thus (G, J, g)
is a complex Norden manifold. In [3], it is proved that if a real Lie algebra g
admits an abelian complex structure then g is solvable (more precisely, 2-step
solvable).

(4.2)

Example 4.1. Consider the real 2-dimensional Lie group G5 defined by

GQ—{(eg ?{>|x,yeR}. (4.4)

The left-invariant vector fields on G5 are

0 0
X1=—, Xo=e€"—. 4.5
YT o 2= Oy (4:5)
Then, the associated Lie algebra go of Go is defined by
g2 [X1, Xo] = Xo. (4.6)

Hence, the structure J on Gy defined by (4.1)) is abelian which yields that
(G3, J, g) is a complex Norden manifold.
By help of the Koszul formula
29(VxY,2) = Xg(Y, Z) + Yg(X,Z) — Zg(X,Y)
+9 (X, Y], Z) +9([Z2,X],Y) +g([Z2,Y], X),
we compute the non-zero components Vx, X; (4,7 = 1,2) of the Levi-Civita
connection

(4.7)

Vx,Xo = X1, Vx, X1 = —Xo. (4.8)
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Denote the components of the fundamental tensor F' by Fy;, = F(X;, X;, X;).
Then, having in mind (2.4)) and (4.8]), we obtain the following non-zero com-
ponents

Fo11 = Fago = —2. (4.9)
By (2.6, the components 6; = 0(X;) of the 1-form 6 are
0, =0, 0y=2. (4.10)

Then, having in mind the characteristic condition (2.8)) of the class W; we
prove the following

Proposition 4.1. The 2-dimensional almost complex Norden manifold (Ga, J, g)

defined by with corresponding Lie algebra go given by (@ belongs to the
class W.

Proof. Taking into account the components Fjj; and 6; from (4.9)) and (4.10)),
we check that for all essential components of F' the characteristic condition
(2.8)) holds. Thus, (G, J,g) is in the class Wj. O

Let us remark that in [I} 2] examples of 2-dimensional manifolds conformally
equivalent to Kédhler manifolds are studied. Such manifolds are in the class W,
with closed 1-forms € and #*. On the manifold which we consider only 6* is
closed.

Example 4.2. Let us generalize the idea of the previous example by consid-
ering the 2n-dimensional Lie group

et 0 .. 0 xp1
0 e ... 0 xppo
Gy, = | 1, %2, ..., 22, ER ». (4.11)
0 0 ... e x9,
0 0 .. 0 1

The left-invariant vector fields on G, are

Xi=—, Xip=¢€" , 1=1,2,...,n. 4.12
(9331‘ + € 8xi+n ! " ( )
The associated Lie algebra g, is defined by the following commutator relations

gon ¢ [ Xi, Xign] = Xign, 1=1,2,..,n. (4.13)

The non-zero components of the Levi-Civita connection are given by

inJrnXi = _Xi+n7 Vx Xi+n =-X;. (414)

i+n
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The non-zero essential components of the tensor F' and its associated 1-forms
are given by

We check that the manifold does not meet the characteristic criteria for the
classes W; or Ws. Hence, we proved

Proposition 4.2. The manifold (Gap, J, g) defined by with correspond-
ing Lie algebra gop, given by belongs to the class Wi @ Ws.

Further, we study the curvature properties of (Ga,, J,g) by computing the
non-zero essential components of the curvature tensor R; 5 = R(X;, X;, Xk, X))
and the Ricci tensor p;; = p(X;, X;), and the scalar curvature:

R(XiaXi+n7Xi+n,X¢) = 1,
p(Xi, Xi) = —p(Xitn, Xiyn) = =1, 7=-2n.

By (4.16) and (4.2) it follows that p = —5-g. Hence, we prove

Proposition 4.3. The complex Norden manifold (Gay, J, g) defined by
and s an Einsteinian manifold.

Let us remark that the Lie algebras (4.6) and (4.13|) are particular cases
of families of 2n-dimensional Lie algebras depending on 2n real parameters
studied in [I1].

(4.16)

Example 4.3. Consider the 4-dimensional Lie group defined by

1 = vy
Gy = 01 z||z,y,2teR }. (4.17)
0 0 ¢

Is we set ¢t = 0 for all z,y, z € R then the Heisenberg group is obtained.

The left-invariant vector fields on G4 are
0 0 0 0 0 0 0
—_—, Xo = o— —, X = —, Xy =y— —_ —. 4.18
ox 2 xay—i—@z 3 y 4 y8y+282+3t ( )
Then, the associated Lie algebra g4 of G4 is defined by the following non-zero
commutator relations

X =

010 [ X1, Xo] = [X3, Xy] = X3, [Xo, Xy] = Xo. (4.19)

From (4.19) it follows that the almost complex structure J on G4 defined by
(4.1)) is abelian and thus, (G4, J, g) is a complex Norden manifold.
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By (4.7) and (4.19) the non-zero essential components of the Levi-Civita
connection are given by:
Vx,Xo=-Vx,Xs =Xy, Vx,Xp=3X3, Vx, Xs=1X;,
Vx,Xs=—3X1, Vx,X4=Xs, Vx,X4=Xs.
The non-zero essential components of the fundamental tensor F' and its asso-
ciated Lie 1-forms are:
Firio=3, Foi=-1, Frpy=2 Fsy=3,
0y = —05 =4.
From the last equations, we check that the manifold does not satisfy the char-
acteristic conditions of the classes W; or W,. Thus, we prove
Proposition 4.4. The manifold (G4, J,g) defined by is in the class
Wi & Ws.

Having in mind (4.20)), the essential non-zero components of the curvature
tensor, the Ricci tensor and the scalar curvature are

(4.20)

(4.21)

3 1 1
Rigo1 = —Rogza = 4§, Rizs1i = 7, Roaaos = —Raas = —1, Risga = —3
_1 _5 __3 _ _ 13
P11 =135, P2=73, P33=—3%, puu=—2, T=3.

Example 4.4. Consider the 4-dimensional Lie group defined by

eYcosz eYsinz zx O
;L —eYsinz eYcosz t O
G, = 0 0 1 0 | z,y,z,t eR 5. (4.22)
0 0 0 e?
The left-invariant vector fields on G/ are

— oY 0 _ oYgipn 2o -9
X1 =¢Ycoszg, —€¥sinzg;, Xo= g,

(4.23)
X3 = a%, Xy=eY sinza% + e¥ cosz%.

Then, the associated Lie algebra g} of G is defined by the following non-zero
commutator relations
921 : [Xl,XQ] = [X37X4] = X4, [Xth] = —[X27X4] = —Xl. (424)

The almost complex structure J on G defined by is abelian and hence
(G, J,g) is a complex Norden manifold.

By and the non-zero essential components of the Levi-Civita
connection are given by:

Vx, X1 =-Vx, Xy =-X3, Vx,Xo=-Vx,X3=2X,,

(4.25)
Vx, X3 =Vx,Xo=-X1, Vx,X4=Vx, X =Xo.
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Then, by (4.1) and (4.25]) we compute the non-zero components of the covariant
derivative of V.J:

(Vx, X1 =—=(Vx,J) Xy = —2X;,

(Vx, )Xo = =(Vx,JJ) X3 = 2X;, (4.26)
(Vx,J) X3 = (Vx,J) X2 = 2X3,

(Va, /) Xs = (Vx, ) X1 = —2X,.

The rest of the components (Vx,JJ)X; are zero. Then, the non-zero essential

components of the fundamental tensor F' and its associated Lie 1-forms are:
F122 = 7F111 = F414 = 2, 01 = 70§ = —4. (427)

From the last equations, we check that the manifold does not satisfy the char-

acteristic conditions of the classes W; or W,. Thus, we prove

Proposition 4.5. The manifold (G, J,g) defined by is in the class

Wi & Whs.

We start studying the curvature properties of (G}, J, g) by computing the
non-zero essential components of the curvature tensor R;jx;:

Ri201 = —Ri331 = —Roaaz = Raqz = —Rigza = 1. (4.28)
Then, we check that the curvature tensor of the considered manifold has the
property R(X,Y,JZ, JW) = R(X,Y,Z,W). In [11], such tensors are termed
anti-Kéhler.
Let us consider the (0,4)-type tensor K defined by

K(X,Y,Z,W) = —g(VxJ)Y — (Vv D)X, (V2))W — (VwJ)Z).  (429)

In [I1], is proved that on a complex manifold with Norden metric the curvature
tensor R satisfies the following identity
S {RUJX,JY,ZW)+ R(X,Y,JZ,JW)}
X,Y,Z

= —ngg((VXJ)Y — (VY )X, (V2 )W = (VwJ)Z),

where & denotes the cyclic sum over three arguments. Thus, having in mind
that the tensor K is anti-symmetric by its first and second pair of arguments,
it follows that in the case when R is anti-Kéhlerian, the tensor K satisfies the
first Bianchi identity, i.e. is a curvature-like tensor.

Theorem 4.6. The curvature tensor R of the complex manifold (G}, J, g) de-
fined by has the form

R(X,Y,Z,W) = —ig((VXJ)Y — (Vy )X, (V2 )W — (VwJ)Z). (4.30)
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Proof. Let X = 2'X;, Y = ¢'X;, Z = 2'X; and W = ' X;, 2%, %, 2, w' € R
(i =1,2,3,4), be arbitrary vectors in gj. By (4.26]) and (4.29) we obtain

K(X,Y,Z,W) = (z'y® — %yt — 22y* + 2y?) (z'w® — 2wt — 22wt + 2*w?)

_ (:z:ly2 — 22y 4Byt - x4y3) (zlw2 221 4 Bt — z4w3) )

Taking into account the components of the curvature tensor (4.28]), we get the

same expression for R. Hence, formula (4.30)) is valid. O

Having in mind the commutator relations (4.24), in a similar way to the
previous theorem we prove the following

Proposition 4.7. The curvature tensor R of (G, J,g) defined by has
the form
R(X,Y, Z, W) =g ([X,Y],[Z,W]). (4.31)

Let us remark that in [I1], an example of a family of 2n-dimensional Lie
algebras with curvature tensor of the form and is studied.

Further, we compute the non-zero essential components of the Ricci tensor
and the scalar curvature as follows

P11 = P22 = —pP33 = —pPaa = 2, T =38. (4.32)
By (4.32) and (4.2) it follows that p = 2¢ and thus we prove

Proposition 4.8. The complex Norden manifold (G, J,g) defined by
is an Einstein manifold.

5. CONCLUSION

In this paper, we have presented and studied examples of 2-, 4- and 2n-
dimensional complex manifolds with Norden metric belonging to three classes
in the classification of Ganchev and Borisov. The examples of K&hler manifolds
are obtained as real interpretations of non-degenerate second degree curves in
the complex plane, and the manifolds in the classes W; and W; & W, are
constructed on Lie groups and Lie algebras.
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HAKOU IIPMMEPHT HA KOMIIJTIEKCHI HOPAEHOBN
MHOT'OOBPA3UNA

Codus yuesa, Mapra Teodunosa

Pesrome. HpeﬂCTaBeHH Ca IpuMepu Ha KOMIIJIEKCHU MHOFOO6pa3I/I§I C HOPJ/IeHOBa

Merpuka. [losydyennu ca JByMEpHH KeJIepOBH MHOroo0pas3nsi KaTo peajiHa MHTEePIIpe-

Talud Ha IVIAJKH KPUBH B KOMIIJIEKCHATa pPaBHUHA. KOHCprI/IpaHI/I Ca IIpuMeEpHu Ha

HOPJIEHOBU MHOT000pa3us ¢ abejieBa KOMILIEKCHA CTPYKTypa BbPXY rpynu Ha Jlu u

asarebpu Ha Jlu.
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