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ABSTRACT 

 
This paper considers an easy construction of points Aa, Ba, Ca on the sides of a 

triangle ABC, such that the configuration M of the path BCaAaBaC consists of 4 

segments of equal lengths. With the help of the M - configuration consisting of the 

three figures M of a triangle, the new geometric “M–Conf–T” transformation is 

constructed. 

 

 

1. INTRODUCTION 

 
In an arbitrary triangle ABC we consider the point Aa on the line BC, the point Ba 

on the half line CA, and the point Ca on the half line BA such that BCa = CaAa = 

AaBa = BaC. We denote the figure BCaAaBaC as configuration Ma, because the 

figure looks like the letter M when triangle ABC is acute-angled (see the Figure 

1.1). Figure 1.2 gives the case of the figure BCaAaBaC when the triangle ABC is 

obtuse-angled. Analogically, we can construct configurations Mb and Mc as well 

(see [4]). The three configurations Ma, Mb, Mc form the so named M-

configuration of triangle ABC (see red M, blue M and green M on the Figure 2). 

 
  

                  Figure1.1                        Figure1.2                       Figure 2 
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Corollary 1. The lines AAa, BBa, CCa have a common point with homogeneous 

barycentric coordinates 
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where CBA ,,  are the angles of the triangle ABC. 

Proof. Let  qa = BCa = CaAa = AaBa = BaC. Then the segments BAa = 2qa cos B  

and  AaC = 2qa cos C. Now it is possible to find the ratio BAa : AaC = cos B : cos 

C. Analogically : ACABCB bb cos:cos:    and  BABCAC cc cos:cos:  . 

Hence, by the Ceva’s theorem it follows that the lines AAa, BBa, CCa have a 

common point with homogeneous barycentric coordinates (1). This point appears in 

[3] as X92. 

Remark. Since 2qa cos B + 2qa cos C = a = 2R sin A, where R is the circumradius 

of the triangle ABC, then 
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It is not so difficult to compute the absolute barycentric coordinates of Aa, Ba, Ca by 

using of qa: 
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2. CONSTRUCTION OF THE CONFIGURATION Ma 

 

Corollary 2. Let 'A  be the intersection point of the bisector of angle A with the 

circumcircle of the triangle ABC. Then: 

(a)  Aa is the intersection of BC with the parallel to 'AA  through the  

           orthocenter H. 

(b)  Ba is the intersection of CA with the parallel to 'CA through the  

          circumcenter O. 

(c)  Ca is the intersection of BA with the parallel to 'BA through the  

          circumcenter O. 
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Proof. (a) The straight line through the point Aa = (0 : cos C : cos B) and the point  
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from where we obtain (see Figure 3) : 

aHA        0coscoscos  CzByaAxcb . 

 

 

 

 

 

 

 

 

 

 

 
 

                                                                'A         Figure 3 

The line aHA has the infinite point 

       BaAcbAcbCaCBa coscos:coscos:coscos  

=       AcAbCBa cos1:cos1:coscos   . 

The above infinite point is the same point as the infinite point    cbcb ::  

lying on the bisector of the angle A , i.e. on the line through the point A  and the 

incentre I of the triangle ABC. 
 

(b) Let M  be the midpoint of BC, and Y, Z are the pedals of Ba, Ca on BC, 

respectively (see Figure 4). We have 
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from where           
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A'  

Figure 4 

The obtained result means that the acute angle between the lines CaO and BC is 

equal to the angle 
2

A
, i.e. the line CaO  is parallel to the line 'BA . 

Analogically, we prove that the line BaO is parallel to the line CA'. 

 
3. SOME CALCULATIONS AND THE “M-CONF-T” 

TRANSFORMATION. 
 

From Figure 2 and (2) by using of the Cosine Law, it is very easy to compute the 

segments aBA  and aCA in terms of the sides cba ,,  of the triangle ABC : 
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Analogically,  
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Now by using of (6), (7) and the Sine Law, we can obtain formulae for the area of 

the triangle cbCAB  :   
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Further: 
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We are interested about the area of the triangle cba CBA . So, from (8), (9) and (10) 

we get: 
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where the sum  and the product  are cyclic. 

From the triangle cbCAB  and (6), (7) it follows: 
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Hence, from the well-known Weitzenböck’s inequality for the sides and the area of 

an arbitrary triangle (see [5], [6]): 

cba CBAaccbba FACCBBA .34222   

and from (11) and (12) we get a new geometric inequality for any triangle: 
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where ABCFF  . 

Of course, it is possible to transform the inequality (13) to an easier form. But here 

it was important to demonstrate that the so constructed M-configuration can be 

associated with a new geometric transformation, named M-Conf-T. The main 

equalities of the transformation M-Conf-T are (11) and (12). 
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РЕЗЮМЕ 

 

В работата се разглежда една конструкция от три точки cba CBА ,, върху 

страните на триъгълника ABC , такава че конфигурацията M от 

начупената линия CBABC aaa  съдържа 4 равни отсечки. С помощта на M - 

конфигурацията, съставена от трите M - фигури за триъгълника, се 

конструира нова геометрична “M–Conf–T” трансформация. 
 


