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ABSTRACT 
 

At first we revisit some well-known models of the real projective plane ( 2RP ). 

Then we introduce the 1S -and 2S -surfaces. The first one is a model of the real 

projective plane. The second one is a sphere. Using the well known Steiner’s 

Roman surface and the Crosscap surface, we define linear combinations of these 

four surfaces and find some flat surfaces, especially two cones. Taking again a 

linear combination of these cones, we prove that such an arbitrary linear 

combination is again a cone.  

For our investigations we apply the powerful computer algebra system MAPLE for 

calculations, visualizations and animations. 

 

 

 

 

I. STEINER’S ROMAN SURFACE 
 

The Roman map is:  

(1)                          
1 2 3 2 3 1 3 1 2, ,y x x y x x y x x   . 

The Jacobian of this map is 

(2)                          
1 2 32Jy x x x . 

Steiner’s Roman surface is the restriction of this map on the half sphere. On takes 

the half sphere because the Roman map is an antipodal map. 

For the half sphere we take (as in the next models):  

(3)  
1 2 3sin cos , sin sin , cosx v u x v u x v   , 

( [ , ], [0, ]
2 2

v u
 

   ). 
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We give some facts of this surface. It is well known that this surface is a model of 

the real projective plane ( 2RP ) and the origin ( (0,0,0)  is its triple point. We give 

here some additional information about the Roman map. The half maximal circles 

u const  are mapped on Steiner’s Roman surface as an ellipsis through the 

origin. Solving the equation  

 (4)                                  
1 2 3 0ax bx cx    

with respect to v , we get  

(5)                                arctan( )
cos sin

abc

c
V

a u b u
 


. 

It follows that the plane (4) cuts the half sphere along the half meridian 

( )abcm v V . The corresponding curve, called straight line on the Steiner’s 

Roman surface, is an ellipse. So all straight lines on this surface are ellipsis, some 

of them are going through the origin. Every two ellipsis (straight lines) have 

exactly one common point. We give a program for animation of the 1-parametrical 

set ( 2, 1b c  ) of the above family. 

 

II. CROSCAP SURFACE 
 

The crosscap map is  

 (6)                         
2 2

1 2 3 2 1 2 3 1 2, 2 ,z x x z x x z x x    . 

The Jacobian of this map is 

(7)                          
2 2

1 2 24( )Jz x x x   . 

The crosscap surface is the restriction of this map on the half sphere. 

The crosscap surface is also a model of the 2RP , whose straight lines have the same 

properties as in the previews case. 

These surfaces are threaded in [1]. From this paper, we use the following 

statement: 

“To realize the real projective plane as a surface in the Euclidean space 
3R , one 

can take a map 
3:F R   of the unit sphere which has the antipodal property. 

Of course, we should choose F so that its Jacobian matrix has a zero determinant 

at only a few points. This can be accomplished by choosing the components of 

F to be certain quadratic polynomials”. In this way one provides the bijectivity of 

the map. 
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III. THE SURFACE 1S  

 

1S -map is the map 

(8)                          
1 1 2 3 2 2 3 1 3 3 1 2( ), ( ), ( )u x x x u x x x u x x x      . 

The Jacobian of this map is 

(9)                          
1 1 2 3det( ) 4S x x x .  

1S -surface is the restriction of this map on the half sphere. It is defined by the first 

author. On the sphere we have  

(10)                         
2

1det( ) 4sin cos cos sinS u u v v . 

It is zero in the following cases: 

a/ 
2

v


 ;    b/ 0v  ;    c/ 0u  ,    d/ 
2

u


 . 

In accordance with these cases on the sphere we have: 

a/ (cos ,sin ,0)u u ,    b/ (0,0,1) ,    c/ (sin ,0,cos )v v ,    d/ (0,sin ,cos )v v  

and on the surface 1S : 

a/ (sin cos ,sin cos ,0)u u u u ,      b/ (0,0,0) ,                  

c/ (sin cos ,0,sin cos )v v v v ,        d/ (0,sin cos ,sin cos )v v v v . 

The mapping between the corresponding images on the sphere and on the surface 

1S  is bijective, so the 1S  map is anywhere bijective between the sphere and the 

surface 1S except the origin which is its triple point. To investigate this surface in 

detail, we use the MAPLE computer software and prove: 

 

THEOREM 1. The 1S -surface is non-orientable and it is a model of the 2RP . 

 

This surface is visualized by Fig.1. 
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                            Fig 1                                                               Fig.2 

 

IV. THE SURFACE 2S  

2S -map is the map 

(11)       
1 1 1 2 3 2 2 1 2 3 3 3 1 2 3( ), ( ), ( )v x x x x v x x x x v x x x x          

2S -surface is the restriction of this map on the half sphere. It is also defined by the 

first author. It is a sphere and is shown by Fig. 2. 
 

V. LINEAR COMBINATION OF THESE SURFACES 
 

If , , ,a b c d  are arbitrary real numbers, we introduce the linear combination 

( , , , )S a b c d of surfaces: 

(12)                    
i i i i iw ay bz cu dv    , 1,2,3,4i  . 

Using the Maple computer software, we find the Gaussian curvature 

( , , , )K a b c d . We prove: 

(13)                     
4

(0,0,0)
3

K  . 

It shows 2S  is a sphere with radius  

(14)                     
3

2
r  . 
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We omit to write the corresponding expression for ( , , , )K a b c d  because it is 

very long. But we prove the following  

 

THEOREM 2. In the following cases  

(15)           : 3, 0, 0, 1; : 0, 0, 3, 1H a b c d J a b c d         , 

the surfaces ( , , , )S a b c d  are flat and, more precisely, they are cones. 

For the corresponding maps we have: 

(16)                          

1 2 3 1 1 2 3

2 3 1 2 1 2 3

3 1 2 3 1 2 3

H 3 ( ),

3 ( ),

3 ( )

x x x x x x

H x x x x x x

H x x x x x x

   

   

   

 

(17)                         

1 1 2 3 1 1 2 3

2 2 3 1 2 1 2 3

3 3 1 2 3 1 2 3

3 ( ) ( ),

3 ( ) ( ),

3 ( ) ( )

 

J x x x x x x x

J x x x x x x x

J x x x x x x x

    

    

    
 

Under the restriction on the unit half sphere, we get the corresponding cones 

represented by Fig 3 and Fig.4: 

     
                           Fig. 3                                               Fig. 4 

 

We consider again some linear combinations -namely those of both cones 

( , )T p q : 

(18)                         

1 1 1

2 2 2

3 3 3

,

,

.

T pH qJ

T pH qJ

T pH qJ

 

 

 
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Now we can prove the following unexpected 

 

THEOREM 3. Any surface ( , )T p q  is flat; more precisely: if p q , the 

surface is a segment, and if p q , the surface is again a cone. In a nutshell: 

a linear combination of cones is cone. 

Proof. At first we calculate that the Gaussian curvature of the arbitrary 

surface (18) is zero. So the surface is flat. Then we investigate the behaviour 

of the normal vector field of (18). We show it is not constant and it has 

points which are not regular. 
 

Fig. 5 illustrates the case 10, 1.p q   

 

                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 
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