
DEVELOPMENT OF COMBINATORIAL SKILLS FOR

UNIVERSITY STUDENTS IN COMPUTER SCIENCE

Galina Dimitrova Momcheva-Gardeva*

Stoyan Nedkov Kapralov**

 *Department of Computer Sciences

Varna Free University ‘Chernorizets Hrabar’, Chaika resort, Varna 9007

**Institute of Mathematics and Informatics

Bulgarian Academy of Sciences, 8 Acad. G. Bonchev, Sofia 1113

*gmomcheva@gmail.com, **s.kapralov@gmail.com

ABSTRACT

This article aims to represent two types of instruments for building up

combinatorial skills for university students in Computer Sciences: applying

schemes of designing soluton to a given problem and using non-traditional tasks,

such as isomorphic problems, puzzles and topological order of problem-

components. Combinatorial skills are the basis of building problem solving culture

and the development of combinatorial thinking is an appropriate step to the

development of computational thinking for computer scientists. The article folows

the ideas of Zeitz [23]that ‘problem solving can be taught, and can be learned’.

INTRODUCTION

Nowadays the role of combinatorial thinking for solving business and

everyday problems is quite important. The problem of existing combinatorial

thinking is multidisciplinary, concerning Mathematics, Computer sciences,

Biology, Chemistry, Arts, etc.

Today combinations in business are the basis of entrepreneurships. Moreover,

combinatorial thinking is a regular requirement in job offers. But how to achieve

it?

According to Daskalov [5], the training of managers should begin with the

skill of combining. 'Employees with a combining mind (i.e. a mind easily adaptable

to the situations and circumstances) climb the professional ladder faster'.

In the area of computer sciences, specialists according to the executive

manager of BASSCOM (association of leading Bulgarian software development

companies) Maya Marinova: 'To sustain our success, the educational system should

mailto:gmomcheva@gmail.com
mailto:s.kapralov@gmail.com

294 6th Mediterranean Conference on Mathematics Education

provide people capable of innovative thinking, with the ability to analyze problems

in depth and with respect of other problems, people that could adapt quickly to

various technological and multidisciplinary environments, and may work in

multinational teams.' [24]

According to psychologists like Runco [21], the generative capacity of the

human brain might specifically result from combinatorial processes. Conventional

thinking, as for the Bono, is based on search and discovery. Parallel thinking is

based on creation and construction. [2]

The emphasis in this article is on the role of combinatorial thinking for

programmers and the process of development of combinatorial skills for computer

science students.

In the courses on Data Structures and Algorithms (DSA) we usually aim to

teach some algorithms and their usage and we usually face some problems of

misunderstanding and lack of motivation.

The experiment that we have done is to explore the ability to solve

combinatorial problems of 15 students studying Computer Sciences (CS) and our

general conclusions are: they do not have an idea of problem solving. The only

idea that is clear is to divide a problem to smaller parts. They can solve only

familiar problems and cannot explain why they have done that. But they

demonstrate without any doubt that they are concerned about their ability of

problem solving. And finally they assert that are familiar with combinatorial

objects, but cannot recognize simple examples and connect them to the term itself.

We have been studying about combinatorial objects but not about

combinatorial style of thinking and the development of combinatorial skills that is

of crucial importance for our students, firstly as humans and also as professionals.

In our opinion, practically there are two types of university students

(according to their career planning): programmers and managers in software

companies or project managers. There is also another classification of them: those

how are content with the topics from school and those who are not.

For the career of students that will be programmers, it is important to know

how to do things (particular programming tasks involving code generation), and for

the second group it is more important how to think, how to generate alternatives.

Because they will be problem solvers and decision makers.

The most important skills in learning is learning how to combine, how to think

of, how to develop personal strategies for problem solving, how to make decisions

and how to code.

Improving the understanding of combinatorial structures gives us the tool for

checking the correctness of the given algorithm or to compare its efficiency with

another one or to construct a new one and experimentally prove its correctness.

As for the students, a future development combinatorial style of thinking is

important in order to develop a general heuristic thinking scheme.

22–26 April 2009, Plovdiv, Bulgaria 295

COMBINATORIAL TASKS AND PROBLEMS

IN MATHEMATICS AND COMPUTER SCIENCE

Piaget and Inhelder [18] defined combinatorial reasoning as ‘the capacity to

determine all the possible ways in which one could link a given set of base

associations with each other’.

In [23] Combinatorics is defined as the study of counting. As a matter of

strategy to decide such a problem is mentioned that 'good combinatorial reasoning

is largely a matter of knowing exactly when to add, multiply, subtract, or divide. '

Predominated methods for solving combinatorial problems from the

International Olympiad in Mathematics, selected in [11] are mathematical methods

(by induction, by contradiction, algebraic) typical for deciding combinatorial tasks

for counting. So do in other books with combinatorial problems solving in math

classes (in high school or in university).

The strategies and methods used in mathematical tasks could be used in CS

tasks too, as careful experimentation with small numbers that is a crucial step [23]

but they couldn’t be generalized.

Janačkova, Janaček [9] led an experiment for solving isomorphic problems

and they recognized 11 strategies that had been used: strategy of exhausted subsets,

group strategy, same number of permutations in groups, strategy of symmetry, …

Actually, a lot of combinatorial ideas persists and precedes official education

in Combinatorics. Here we mean boolean logic and their usage in conditionals or

using nested circles. Of course, we could not study everything in books, e.g. Lipski

[14].

In [7] Grozdev and Garov suggested the following topics in Combinatorics

that have been covered for competitors in informatics: generating, coding and

decoding combinatorial objects like permutations, combinations and compositions

(with/without repetitions) and partitions (set, number).

As for the combinatorial object that could be taught to university students, we

suggest the following: permutation, combinations, compositions; partitions; Ferrer

diagrams; Young tables and Gray codes (sequences). And also general operations

over combinatorial objects: counting, numbering (enumerating, ranking/unranking)

and generating. Some of these topics are covered in classes in Discrete

Mathematics but students do not write any program - they only cover the idea.

We extended the content to the described above because of the idea that the

more combinatorial objects there are, the more combinatorial ideas the student will

observe. And for these topics, training observation is very important. The bigger

list of combinatorial objects suggests to us more connections between different

combinatorial objects and their properties. It is a natural combination between them

that we can use.

According to our experience, the process of learning how to problem solve has

to begin at the very beginning (of every education). Solving tasks of the same type

in repetition is not a good strategy to achieve understanding by university students.

296 6th Mediterranean Conference on Mathematics Education

So, we can apply at every step the schemes represented in the next section of

this article. For example, use some tool for exploration like Excel, Mathematica,

libraries, packages or applets.

An analogy for that could be seen in the article by Abramovich [1] where he

said that while making connections among geometry, number theory and

combinatorics, students can experience mathematics as a whole. They explore

combinatorial objects through spreadsheets. Similarly, by making connections

among different representations – namely spreadsheets, manipulative and visual

imagery – students can develop a richer understanding of permutations and

combinations.

The education on this topic combines the content of several disciplines, such

as Probability and Statistics and Discrete Mathematics. The results of this

education are used in data structure and algorithms. It will be very helpful if at least

labs in DM for the university students write the programs implementing described

concepts or make explorations. But for most of the students (because of their poor

mathematical education in high school) it is impossible. So we suggest that we let

the students ‘touch’ the problems in some way. Using computers to do so was

based on the idea of computational thinking, developing which is quite important

nowadays.[3]

The general methods for solving such problems are founded on the use of

combinatorial principles, solving recurrent relations, etc. But our students come to

the conclusion that studying formulae is everything.

Experimental interactive computer modules are developed and used for

teaching Combinatorics, Probability and Statistics at high schools [10]. The authors

explore the effectiveness of experimental education in Combinatorics, probabilities

in high schools in raising the activity in high school students but they do it in IT

classes, not in Math classes.

There is a difference between the problems in competitions in mathematics

and informatics [7]. Each mathematical problem carries information and in this

sense it is knowledge. Thus, the tool acquired through it can be used for solving

other mathematical problems. In CS, the solution, i.e. building an algorithm and a

computer program, is an essential part. The component problems in mathematical

problems, i.e. the problems whose solutions are part of the solution of the main

problem, can be interpreted as algorithmic knowledge.

The difference between the mathematical and the CS approaches to formulate

combinatorial tasks is grounded on the idea that if we could not find a decision at

once, this is because we did not know it. We could find at least a partial solution

taking in mind some other knowledge.

The next level of abstraction of these problems is where the combinatorial

object is not so obvious in the text. This is the first step to create a problem

situation – to hide the combinatorial objects.

22–26 April 2009, Plovdiv, Bulgaria 297

SCHEMES FOR PROBLEM SOLVING OF COMBINATORIAL

PROBLEMS

We know that Aristoteles noticed that reasoning corresponds to schemes. The

books of Polya [19] for plausible reasoning, and the famous book ‘How to solve

it?’ [20] (look for a pattern, draw a picture, solve a simpler problem, use a model,

work backward, use a formula, be creative,…) Schemes for analysis of solving

problems of Papus and Euclid are well familiar to us, too. Today the schemes are

updated by Ziet [23] and many others, especially thoroughly elaborated for

business purposes and a lot of positive ideas appear in different publications, too.

Ginat [6]represented an approach of ‘elaborating divergent thinking in

algorithm design, while capitalizing on erroneous solutions… initial faulty solution

are carefully examined, and their falsifying inputs and characteristics are used for

creative reasoning that yields fruitful outcomes.’ It is quite a helpful approach, but

we could not implement it in the teaching and learning process all the time.

The reason is that the students will get content with this approach and a

repetition of similar actions usually stops thinking. But it is really helpful, so we

can create a scheme from this approach to be applied in our SDA classes ‘to apply

consequently every design technique to the problem and verify if this works or

not’. This process takes time but it deserves to apply. For some educators, this

approach is their methods of teaching.

Another interesting idea is presented in [4]. They take a verbalization of

actions while solving a problem for a student as an instrument in understanding

students’ problem solving process.

Grozdev&Garov [7] offer eight steps for solving CS problems (algorithmic

solution with computer) on the system of supportive problems in the preparation

for participation in informatics olympiads:

 the conditions of the problem

 constructing a model of the problem

 developing an algorithm for solving the problem

 check the correctness of the algorithm

 analyzing the algorithm and its complexity

 transferring the algorithm into a programming language with the use of

software

 checking and testing the program

 writing documentation

The next scheme that we want to pay attention to is the works of Anany

Levitin [12]. He defines an algorithm as a sequence of unambiguous instructions

for solving a problem, i.e., for obtaining a required output for any legitimate input

in a finite amount of time. So we can consider algorithms to be procedural

solutions to problems.

298 6th Mediterranean Conference on Mathematics Education

Understanding
problem

Decide on:
computational means,

exact vs. approximate solving,
data structure(s),

lgorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

Figure 1.

We accept this scheme as a macro scheme. In order to teach students how to

problem solve, we represent more partial and practical schemes for educational

purposes – ‘schemes instances’ in applying which we could solve specific classes

of problems. For the purpose of this article – combinatorial problems.

The schemes and steps mentioned above do not include finding a solution by

experimenting with the use of a computer, which in our opinion is crucial in

problem solution training.

The authors believe that representing schemes to the students will increase

their success in problem solving because they will have new frames - models of

reasoning.

 The quantity of tools and strategies for general problem solving is increased,

while the knowledge to solve combinatorial problems is developed.

22–26 April 2009, Plovdiv, Bulgaria 299

problem

mathematical
model

mathematical
task

coding
(in programing language)

Figure 2

problem

data representation

coding
(in programing language)

data structures

algorithms

Figure 3

models

problem

coding
(in programing language)

data structures

algorithms

Figure 4

Figure 2 shows the so called ‘standard problem solving scheme’ where every

tasks is modeled to a mathematical one and is solved though mathematical

methods. We have mentioned that not every student in the university has the

appropriate mathematical literacy and that is why this scheme is doomed to failure.

As for the process of combinatorial tasks, this scheme is inappropriate when

we try to solve optimization combinatorial problem, or such instance of a task

where there is not enough space for the program to be executed. But in many

problems or for many students this scheme works.

During the writing of this article we made a little experiment with a target

group of students and most of them preferred the scheme in Figue 3. Their

explanations varied from intuition to finding similarity with program source.

Here representing data is not choosing data types or defining variables but

preprocessing of data input. Figure 4 represents a scheme that is typical of such

types of tasks for problem solving in DSA classes.

The restrictions in DSA problems are crucial. By changing the time or space

limits, we could solve quite a different problem. There are two types of building

problems according to their restrictions. In one of them – the restrictions made the

problem easier, the problem becomes the instance of the original one. The second

type comes when adding restrictions to standard problems. Such a type is the

optimization one.

Developing problem solving by adding restrictions to ‘standard’ problems is a

way to create problems and to create new problem situations. Here is a very simple

one: from traversing a table (using nested cycles ‘for’), next could be checking

whether a square is a magic one, and then complicating with finding the one

300 6th Mediterranean Conference on Mathematics Education

missing number in a magic square, finding two, .. more. Generating magic squares

or Sudoku.

The last of the represented schemes here is Figure 5, used where we have to

find optimal solution. The idea is in a constructive manner to create every possible

instance of problem domain and then to explore: e.g. to exclude the odd instances,

to find out a dependence, to find out a recurrent relation and reduce it and so on till

a satisfying solution has been obtained.

Search
(exhaustive, brute-force)

problem

coding
(in programing language)

exploration

models

Figure 5

When the problems come to optimal putting some limits in space and time, we

could change some schemes by iterating these elements (blocks and branches) that

lead us to take new decision. Something like backtracking in the scheme itself.

In the experiment, we suggested to students schemes connected to algorithm

design, but they were not content with them.

The similarity between problems for competitors in informatics and these for

university students in CS (not being CS competitors) is that neither of them have

set up strategies for solving problems, cannot apply even penultimate step Zeit

[29].

In competitive problems for high school student there is a chance to receive

points for partial solutions, for competitions for university students they have a
chance to send a problem decision to the server several times (taking penalty for

that). Even good enough students are provoked to have a chance.

And then, what about not very good students. This is a data structure and

algorithmic discipline that could provoke them to be thinkers not cheaters. But how

to do that?

The answer is to allow them to use the computer as a tool – if they are not

good programmers – then they could use libraries, or specialized software [17]

22–26 April 2009, Plovdiv, Bulgaria 301

because the main point is to learn to observe, to read patterns, and not to try to

program.

So, the next two schemes are connected with the process of learning, or we could

say the process of solving the problem how to organize teaching and learning.

This is an optimal scheme according to mathematical reasoning, but we go

back to recursive or exhaustive searching and reasoning to apply the strategy of

dirty hands in trying to solve the problem with more than best in programming

students.

So, instead of using the scheme in Figure 6, where we reach the mathematical

model, and then to program our solution in Figure 7.

Thinking

(reasoning)

Recursive
computing

Mathematical
Thinking

=
Abstract
Thinking

Figure 6

Thinking
(reasoning)

Recursive
computing

Mathematical
Thinking

Abstract
Thinking

Figure 7

And after the success of the solving process we could do the reverse process to

go backward to abstractions. This is the way of representing the students

abstractions, too.

The generating idea (at the means of innovation) is ‘to receive a solution’ and

then to optimize the solution. So the process of generating combinatorial objects is

of very big importance. Then the optimizing process depends on two skills:

combinatorial thinking, and analyzing data. Teaching how to do this with

algorithms shows a path how to do in thinking.

[3] The synthesis strategies of parallel algorithms are basically different from

the traditional procedures of algorithmic synthesis for conventional computers.

Designers have three options: to parallelize an existing consecutive algorithm, to

create a new parallel algorithm or to make an effective combination of existing

consecutive and/or parallel algorithms for solving the problem.

But we can try to parallel programs in Java because of threads. For example, a

combinatorial problem of generating permutations for bigger n is possible to

implement by parallelize the process. It is possible to use generations through the

algorithms of numbering. So, every thread could generate different ranges from the

output domain.

NEW AND NOT SO TYPICAL TYPE OF TASKS IN DSA CLASSES

As we know, in managing DSA education we could try to give a lot of time

for experimenting: by hand; using spreadsheets; using specialized software and

302 6th Mediterranean Conference on Mathematics Education

also to apply schemes for finding paths: drawing; using formulas; using

combinatorial reasoning; using moreover seeing patterns.

In our experimental group, some of these schemes were followed, for example

some people drew, others enumerated all possibilities for a given problem. We

have to teach people how to transform tasks, the technique [12] ‘transform and

conquer’. And we could not remember because of different style of learning one

prefer numbers, while another one figures.

In addition to schemes of solving combinatorial problems and general

schemes, we recommend the following:

- using in education isomorphic problems

- solving topological ordered sequences of problems-components

- using puzzles

Manuel [15] represents four groups of equivalent combinatorial counting

problems that can be used in the classroom and according to us could be used in

generating databases for creating tests in web. He called isomorphism problem

equivalence or structural identity.

In our experiment, to see the input level of our students responding to the

problem, solving in data structure and algorithms, we see that students finding out

the isomorphism but they solve tasks and compare the results. They cannot

recognize the model. This is a straight proof of our suggestion that in every data

structure and algorithms classes we have to do tasks in which recognize models.

We used in the test 3 of this four isomorphic combinatorial problems [9]

‘The town problem’, ‘The Ice Hockey Problem’, ‘The Pigeonhole Problem’ and

‘The Line Problem’.

The students tested in our small experiment could not solve the tasks for

finding the ordering of problems. The idea of solving tasks in groups is another

innovative idea that is waiting for us. The next step in learning about isomorphic

tasks is to insist on students to create such one. Involving in this process, increases

the ability to think and also increases combinatorial reasoning.

Grozdev, Chehlarova [8]. The game develops the skills required for

processing parallel information, managing different systems and switching between

them, as well as skills required for handling the unknown.

The role of using puzzles in CS education is discussed [13], [22], tasks for

chess, or on chess board – they developed spatial thinking, technique for noticing

two things at once and organize movements on the chess table.

The learning path for problem solving of university students in CS comes

through combinatorial compositions-decompositions. Learning Combinatorics

gives the learner the ability of combinatorial reasoning and thinking. Taking this in

advance, we have the appropriate tools for making compositions of algorithm (e.g.

they are quite different in mathematics or in art). This is the ability used in problem

solving because it makes easier the problem of decomposition if you are familiar to

compositions. And most of the problems waiting to be solved need the ability to

make adequate decompositions (quite useful today in pattern recognitions).

22–26 April 2009, Plovdiv, Bulgaria 303

CONCLUSION

The combinatorial thinking is important for generating alternatives –

important in heuristic thinking, testing programs, verifying experimentally new

algorithms. Especially important for programmers and CS specialists is the

exhaustive search (combinatorial search) which is in the basis of every search.

An interesting comparison between exhaustive and reverse search is done by

J.Nievergelt [16]. He uses the research of Avis and Takuda where a set of

conditions is presented that enable graph traversal without auxiliary data structures,

such as stacks, queues, or node marks. The amount of memory used for book-

keeping is constant, i. e. independent of the size of the graph. Their reverse search

is a depth-first search (DFS) that requires neither stack nor node markers to be

stored explicitly – all necessary information could be recomputed on the fly. The

illustration of reverse search by Nievergelt is done by an empirical study of

enumerating the k shortest Euclidean spanning trees.

A good education in Combinatorics and combinatorial thinking is a solid base

for developing heuristic schemes of solving problems.

The continuation of our work is to prepare the scheme for combining schemes

we mean as the composition of basic schemes and develop heuristic schemes for

complicated optimization combinatorial problems.

The combination between strategic schemes and design techniques and

programming languages features is still poorly explored.

The next branch of future development is networking. These schemes are

personal, but they could be applied to a pair in pair programming, or to a team in

project work. This is also a matter of considerable interest for authors. Once

developed, such schemes could be easily virtualized.

Achieving the first one depends on the personal characteristics, that is why

they are suitable for learning.

REFERENCES

[1] Abramovich, S., A. Pieper, ‘Fostering Recursive Thinking in Combinatorics

through the Use of Manipulatives and Computing Technology’, The mathematical

Educator, 2000

[2] Bono, E., ‘Parallel Thinking’, Penguin Books Ltd, 1990

[3] Borovska, Pl., M. Lazarova, ‘Parallel informatiion processing’, Ciela, 2007

[4] Chinn, D., C. Spencer, K. Martin, Problem solving and students Performance in

Data Structures and Algorithms, ACM SIGSE, vol 39, no3, 2007

[5] Daskalov, N., ‘The combinations in business’, Abagar, Veliko Tyrnovo, 1997

[6] Ginat., D., Learning from Wrong and Creative Algorithm Design, ACM

SIGCE, vl.40, no 1, 2008

[7] Grozdev, S., K. Garov, ‘On the system of supportive problems in the

preparation for participation in informatics olympiads. Combinatorial objects and

304 6th Mediterranean Conference on Mathematics Education

algorithms’ (306), Mathematics and education in mathematics, 2008, Proceedings

of the Thirty Seventh Spring Conference of the Union of Bulgarian

Mathematicians, Borovetz, April 2-6, 2008

[8] Grozdev, S., Т. Chehlarova, ‘Cubes and Consructions’, Association for the

development of Education, Sofia, 2007

[9] Janačkova, Janaček, ‘A classification of strategies employed by high school

students in isomorphic combinatorial problems’, TMME, Vol 3, pp 128-145, 2006

[10] Karashtranova, E., E. Stoimenova, ‘Study the effects of teaching the theeory

of combinations, the calculus of probability and statistics in secondary schools.’,

Mathematics and education in mathematics, 2008, Proceedings of the Thirty

Seventh Spring Conference of the Union of Bulgarian Mathematicians, Varna,

April 2-6, 2007

[11] Kolev, E. ‘Combinatorial problems’, Union of Bulgarian Mathematitions-

Varna, 2003

[12] Levitin, A., ‘Introduction of The Design & Analysis of Algorithms’, Pearson

Education, 2007

[13] Levitin, A., M. Papalaskari, ‘Using puzzles in teaching algorithms’, ACM,

SIGCSE 33, 2002

[14] Lipski W, ‘Combinatorics for programmers’, Mir, 1988

[15]Manuel R., ‘An introduction to problem equivalence in Combinatorics’, ACM

SIGSE, vol 40, num 3, 2008

[16] Nievergelt J., Exhaustive Search, ‘Combinatorial Optimization and

Enumeration: Exploring the Potential of Raw Computing Power’, SOFSEM 2000,

LNCS 1963, pp. 18–35, Springer-Verlag, Berlin 2000

[17] Pemmaraju, S., S. Skiena, ‘Computational Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica‘, Cambridge University Press,

2003

[18] Piaget, J. & Inhelder, B., ‘La genèse de l’idée de hasard chez l’enfant’ [The

origin of the idea of chance in children], Paris, 1951

[19] Polya, G., How to solve?, Narodna prosveta, 1972

[20] Polya, G., Mathematics and plausible reasoning, Narodna prosveta, 1976

[21] Runco, M., Creativity, Elsevier Academic Press, 2007

[22] Shasha, D., Puzzles for Programmers and Pros, Wrox Press, 2007

[23] Zeitz, P., ‘The Art and Craft of Problem Solving’, John Wiley & Sons, 1999

[24] http://basscom.org/ accessed on march 13th, 2009

http://www.wolfram.com/books/search.html?author=Sriram+Pemmaraju&collection=books
http://www.wolfram.com/books/search.html?author=Steven+Skiena&collection=books
http://www.wolfram.com/books/profile.cgi?id=5129
http://www.wolfram.com/books/profile.cgi?id=5129
http://www.wolfram.com/books/search.html?publisher=Cambridge+University+Press&collection=books
http://www.wolfram.com/books/search.html?year=2003&collection=books
http://basscom.org/

