ЮБИЛЕЙНА НАУЧНА СЕСИЯ — 30 години ФМИ ПУ "Паисий Хилендарски", Пловдив, 3-4.11.2000

CLASS OF MANIFOLDS ADMITTING HOLOMORPHICALLY-PROJECTIVE TRANSFORMATIONS

Georgi Dimitrov Djelepov, Iva Roumenova Dokuzova

We consider a class of B-manifolds M_{2n} , which besides the metric g and the complex structure J admit a covector field f such that: $\nabla_i f_j = \alpha g_{ij} + \beta J_{ij}$, $\alpha,\beta \in FM_{2n}$. We state that such a manifold admits a non-trivial HP-transformation in some manifold of the same class.

We note by B the class of the complex Riemannian manifolds \boldsymbol{M}_{n} such that

$$(1) \qquad \qquad \stackrel{c}{\nabla}_{\lambda} \phi_{\mu} = AG_{\lambda\mu} \ ,$$

where $G_{\lambda\mu}$ is the metric of the manifold, A is non-zero function, ϕ_{μ} is a covector field on M_n such that $G^{\lambda\mu}\,\varphi_{\mu}\varphi_{\lambda}\neq 0$ and $\overset{c}{V}$ is the connection of $G_{\lambda\mu}.$ The above geometric objects are analytic with respect to some local coordinate system $\{z^{\lambda}=x^{\lambda}+ix^{\lambda+n}\},\quad i^{2}=-1,\quad \lambda\in\{1,2,...n\}$

Using the ideas and literally calculations from [1], where similar real differentiable objects are considered we can find the corresponding similar assertion, as follows:

Theorem 1. Let M_n be in B. Then M_n admits a non-trivial projective transformation with an analytic vector in some \overline{M}_n in B.

Now we consider a class HB of real differentiable Riemannian manifolds M_{zn} . So M_{2n} is in HB, if M_{2n} is a B-manifold [2], i.e. M_{2n} admits a complex structure J_i^S , a B-metric g_{is} and J_i^S is covariantly constant with respect to the connection ∇ of g_{si} . That means:

(2)
$$J_{i}^{S}J_{s}^{p} = -\delta_{i}^{p}; \quad J_{i}^{p}J_{j}^{S}g_{ps} = -g_{ij}; \quad \nabla_{k}J_{i}^{S} = 0.$$

Moreover the manifold M_{2n} also satisfies the condition

(3)
$$\nabla_{i} f_{j} = \alpha g_{ij} + \beta J_{ij},$$

where $J_{ij} = J_i^t g_{tj}$ and $\alpha, \beta \in FM_{2n}$, and f_i is a covector field on M_{2n} , such that $g^{is} f_i^{} f_s \neq 0$; $g^{is} f_i^{} \widetilde{f}_s \neq 0$ here $\widetilde{f}_s = J_s^i f_i^{}$. From (3) taking account of (2) we get.

(4)
$$\nabla_{i} \widetilde{f}_{i} = -\beta g_{ii} + \alpha J_{ii} .$$

All Latin indices run over the rang $\{1,2,.....2n\}$. On due to (2) we have $J_{is} = J_{si}$, consequently

(3) and (4) shows there exist two functions f, \widetilde{f} in FM_{2n} , such that $f_i = \frac{\partial f}{\partial x^i}$, $\widetilde{f}_i = \frac{\partial \widetilde{f}}{\partial x^i}$, with respect to a local coordinate system $\{x^i\}$. By virtue of (2) the following is valid

(5)
$$J_{i}^{s} = \begin{pmatrix} 0 - E \\ E & 0 \end{pmatrix}; \quad g_{is} = \begin{pmatrix} A & B \\ B - A \end{pmatrix}; \quad J_{is} = \begin{pmatrix} -B & A \\ A & B \end{pmatrix},$$

where E is the unit matrix, A, B are symmetric matrices all of type (n,n).

Let R_{iki}^s and R_{is} be the curvature tensor and the Ricci tensor of ∇ respectively. We put

$$\alpha_i = \frac{\partial \alpha}{\partial x^i}, \quad \beta_i = \frac{\partial \beta}{\partial x^i}. \quad \text{From (3) we find}$$

(6)
$$f_{s}R_{jki}^{s} = \alpha_{k}g_{ij} - \alpha_{i}g_{kj} + \beta_{k}J_{ij} - \beta_{i}J_{kj}.$$

Contracting (6) by g^{ij} and $J^{ij} (= J_t^i g^{tj})$ respectively and using (2) we get

(7)
$$-\mathbf{R}_{k}^{s} \mathbf{f}_{s} = (2n-1)\alpha_{k} - \mathbf{J}_{k}^{s} \beta_{s}$$

(8)
$$\widetilde{R}_{k}^{s} f_{s} = -J_{k}^{s} \alpha_{s} - (2n-1)\beta_{k}.$$

From (7) and (8) it follows

(9)
$$J_k^s \alpha_s = -\beta_k; \qquad J_k^s \beta_s = \alpha_k.$$

Now we contract (6) with $f^{j} (= g^{js} f_{s})$ and using (9) we obtain (10)

$$\alpha_{_k}f_{_i}-\alpha_{_i}f_{_k}+\beta_{_k}\widetilde{f}_{_i}-\beta_{_i}\widetilde{f}_{_k}=0\ .$$

From (10) we get immediately

(11)
$$\alpha_k \widetilde{f}_i + \beta_i f_k - \beta_k f_i - \alpha_i \widetilde{f}_k = 0$$

The equations (10), (11) show the following

(12)
$$\alpha = \alpha(f, \tilde{f}); \qquad \beta = \beta(f, \tilde{f}); \qquad \frac{\partial \alpha}{\partial \tilde{f}} = \frac{\partial \beta}{\partial f}; \qquad \frac{\partial \beta}{\partial \tilde{f}} = -\frac{\partial \alpha}{\partial f} .$$

Let's accept the family $f(x^1, x^2, x^{2n}) = c_1$ for new coordinate hypersurfaces y^1 =const and their orthogonal pats for coordinate lines y^1 . So we have [1]

$$f_{_{i}}=\delta_{_{i}}^{1}\ .$$

From (5) and (13) we get

(14)
$$\widetilde{f}_{i} = \delta_{i}^{n+1} .$$

That's why we accept $\widetilde{f}(x^1, x^2, x^1, \dots x^{2n}) = c_2$ for another new coordinate hypersurfaces and their orthogonal pats for coordinate lines y^{n+1} . Further the Greek indices will run over the

rang {2,3,...n}. We put also $y^{\delta}=x^{\delta};\ y^{\delta+n}=x^{\delta+n}$. In the new coordinate system $\{y^i\}$ we have [1]

(15)
$$g_{1\delta} = J_{n+1\delta} = 0; g_{n+1\delta} = J_{1\delta} = 0.$$

We note $\partial_i = \frac{\partial}{\partial y^i}$. Using (12) we conclude the following assertion is true.

Theorem 2. The complex function $A = \alpha - i\beta$ is analytic with respect to argument $z^1 = y^1 + iy^{n+1}$.

Further from (5) and (15) we find

(16)
$$g^{11} = \frac{g_{11}}{g_{11}^2 + J_{11}^2} ; \qquad J^{11} = \frac{J_{11}}{g_{11}^2 + J_{11}^2} ;$$

$$g^{1\delta} = J^{1\delta} = g^{1n+1} = J^{1n+1} = 0.$$

We know the coefficients Γ of ∇ are as follows $\Gamma_{ij}^{s} = \frac{1}{2} g^{sp} (\partial_{i} g_{jp} + \partial_{j} g_{ip} - \partial_{p} g_{ij})$.

Using this formula, (2)-(4), (13)-(16) we get

(17)
$$g^{1s} \left(\partial_{i} g_{js} + \partial_{j} g_{is} - \partial_{s} g_{ij} \right) = -2\alpha g_{ij} - 2\beta J_{ij}$$
$$g^{n+1s} \left(\partial_{i} g_{js} + \partial_{j} g_{is} - \partial_{s} g_{ij} \right) = 2\beta g_{ij} - 2\alpha J_{ij}.$$

Putting in (17) i = 1, $j = \lambda$ (or i = n+1; $j = \lambda$) and using (15) and (16) we get

(18)
$$\partial_{\lambda} g_{11} = \partial_{\lambda} J_{11} = \partial_{\lambda+n} J_{11} = \partial_{\lambda+n} g_{11} = 0.$$

So
$$g_{11} = g_{11}(y^1, y^{n+1})$$
 and $J_{11} = J_{11}(y^1, y^{n+1})$

Now putting in (17) i=j=1 or $i=1,\ j=n+1;$ or $j=n+1;\ i=\lambda$ respectively and comparing the obtained six equations we get

(19)
$$\partial_{1}g_{11} = \partial_{n+1}J_{11}; \partial_{n+1}g_{11} = -\partial_{1}J_{11},$$

as well as after some computations we find

$$(20) \qquad \partial_{1} \ln \left(g_{11}^{2} + J_{11}^{2} \right) = -4 \left(\alpha g_{11} + \beta J_{11} \right), \\ \partial_{1} \operatorname{arctg} \frac{g_{11}}{J_{11}} = -2 \left(\beta g_{11} - \alpha J_{11} \right) \\ \partial_{n+1} \ln \left(g_{11}^{2} + J_{11}^{2} \right) = -4 \left(\beta g_{11} - \alpha J_{11} \right), \\ \partial_{n+1} \operatorname{arctg} \frac{g_{11}}{J_{11}} = 2 \left(\alpha g_{11} + \beta J_{11} \right).$$

If $i = \lambda$, $j = \mu + n$, then (17) implies

$$(21) \hspace{1cm} \partial_{1}g_{\lambda\mu} = \partial_{n+1}J_{\lambda\mu}; \hspace{1cm} \partial_{n+1}g_{\lambda\mu} = -\partial_{1}J_{\lambda\mu}$$

as well as

$$(22) \qquad \partial_{1} ln \Big(g_{\lambda\mu}^{\ 2} + J_{\lambda\mu}^{\ 2}\Big) = 4 \Big(\alpha g_{11} + \beta J_{11}\Big); \qquad \partial_{1} arcg \frac{g_{\lambda\mu}}{J_{\lambda\mu}} = 2 \Big(\beta g_{11} - \alpha J_{11}\Big)$$

$$\partial_{_{n+1}} \ln (g_{_{\lambda\mu}}^{\,2} + J_{_{\lambda\mu}}^{\,2}) = 4 (\beta g_{_{11}} - \alpha J_{_{11}}) \, ; \qquad \partial_{_{n+1}} arctg \frac{g_{_{\lambda\mu}}}{J_{_{\lambda\mu}}} = -2 (\alpha g_{_{11}} + \beta J_{_{11}}) \, ;$$

From (18) and (19) there follows immediately

Theorem 3. The complex function $G_{11}(z^1) = g_{11}(y^1, y^{n+1}) + i J_{11}(y^1, y^{n+1})$ is analytic. Now comparing (20) and (22) after long computations we obtain

$$(23) \quad g_{\lambda\mu} = e^{p\lambda\mu} \Biggl(\frac{J_{11} \sin g_{\lambda\mu} - g_{11} \cos q_{\lambda\mu}}{g_{11}^2 + J_{11}^2} \Biggr); \ J_{\lambda\mu} = e^{p\lambda\mu} \Biggl(\frac{J_{11} \cos q_{\lambda\mu} + g_{11} \sin q_{\lambda\mu}}{g_{11}^2 + J_{11}^2} \Biggr),$$

where $P_{\lambda\mu}$ and $q_{\lambda\mu}$ are arbitrary functions of $\left(y^{\delta},y^{\delta+n}\right)$ and we can choose them in the following way

(24)
$$\partial_{\delta} \mathbf{p}_{\lambda \mathbf{u}} = -\partial_{\delta + \mathbf{n}} \mathbf{q}_{\lambda \mathbf{u}} \; ; \qquad \partial_{\delta + \mathbf{n}} \mathbf{p}_{\lambda \mathbf{u}} = \partial_{\delta} \mathbf{q}_{\lambda \mathbf{u}} \; .$$

Theorem 4. The complex functions $G_{\lambda\mu}=g_{\lambda\mu}+iJ_{\lambda\mu}$ are analytic with respect to $z^\delta=y^\delta+iy^{\delta+n}$, here λ,μ,δ are in $\{1,2,...,n\}$.

The proof following from (15), Theorem 3, (23) and (24).

The main purpose of the present paper is the following assertion.

Theorem 5. Let M_{2n} be in HB. Then M_{2n} admits a non-trivial holomorphically-projective transformation in some \overline{M}_{2n} in HB.

Proof . Let M_{2n} be in HB. Then we consider the complex Riemannian manifold M_n^* with a metric $G_{\lambda\mu}$ from Theorem 4. It is easily to verify that M_n^* satisfies (1), where A is the function from Theorem 2 and $\phi_\mu = \delta_\mu^1 + i \delta_\mu^{n+1}$. So M_n^* is in B. On due to Theorem 1 we have M_n^* admits a non-trivial projective transformation in some \overline{M}_n^* in B. On the other hand following Norden [2] we obtain , that the real interpretation of M_n^* is M_{2n} and the real interpretation of \overline{M}_n^* is some \overline{M}_{2n} in HB. Finally the real interpretation of the projective transformation between M_n^* and \overline{M}_n^* is a holomorphically-projective transformation between M_{2n} and \overline{M}_{2n} . So the theorem is proved.

REFERENCES

^{[1].} Синюков Н.С. Геодезические отображения римановых пространств. Москва, ...Наука' 1979.

^{[2].} Норден А.П. Об одном классе четиримерных А пространств. Изв. вузов Матем. 1960, $\,$ N4 .