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ON AN J-CONNECTION ON A B-MANIFOLD  
 

Georgi Dimitrov Djelepov, Iva Roumenova Dokuzova 

Let ( M, g ,J ) be a Riemannian manifold M with a metric g and a structure J such that J2=-id, 
g( Jx, Jy )=-g( x, y ), x, y ∈ XM, ∇J=0 . Now we discuss another symmetric J-connection  

∇ , related with the connection ∇ of g. If R =0, where R  is the curvature tensor of  ∇  
we get a known subclass [ 1 ], [ 3 ] of the B-manifolds. The inverse problem is discussed too. 
 

A Riemannian manifold M2n is in the class GB, of the so called generalized B-manifolds 
[2], if M2n admits an almost complex structure J and a B-metric g, i.e. 

     J2=-id,   g( Jx, Jy )=-g( x, y ), x, y ∈ XM. 

If M is in GB and ∇J=0, where ∇ is a Riemannian connection of g, then M is in the class B 
of the B-manifolds [ 4 ]. 

Let Ji
s and gis be the local coordinates of J and g respectively. We note by Jij=Ji

sgsj  and by 

virtue of (1) we have Jis=Jsi. So we can define another symmetric connection ∇ , whose 
Ricci-Christoffel symbols are as follows: 

(2)    Γ ij
k 
= Γij

k + Τij
k,   Τij

k 
= gij f

k − Jij 
kf

~
, 

where fk is a vector field, kf
~

=Jt
k ft  and Γij

k are the Ricci-Christoffel symbols of ∇. By a 

direct calculations we see, that ∇  is an J-connection ( i.e. ∇ J=0 ), but it is not 

metric-connection ( i.e. ∇g≠0 ). 

Now we consider the map α:∇→∇  defined by (2). Let R ,R be the curvature tensor 

fields of ∇  and ∇ respectively. If Τ is the tensor of the affine deformation, then it is well 
known 

(3)     R h
ijk = Rh

ijk + ∇jΤ
h
ik −∇kΤ

h
ij +Τ

s
ik Τ

h
sj −Τ

s
ij Τ

h
sk  

for the local coordinates of R , R and Τ respectively. 
From (2) and (3) it follows 

(4)   R h
ijk = Rh

ijk +gik P
h
j − gij P

h
k − Jik P

~ h
j  + Jij P

~ h
k ,  

where Ph
j = ∇fh + fj f

h − h
j ff
~~

,   P
~ h

j  = Pt
j Jt

h .  

We note by S ij = R p
ijp , Sij = Rp

ijp the local coordinates of corresponding Ricci tensors 

S  and S of ∇  and ∇. The functions τ = S ij g
ij

 , τ
∗
= S ij J

ij and τ  = Sij g
ij

 , 
∗
τ  = Sij J

ij are 

the first and the second scalar curvatures of ∇  and ∇ respectively. 
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After a long calculation from (4) we find  

(5)   2(1-n)S ij = 2(1-n)Sij +4(1-n)Pji − (τ − τ ) g ij + (τ
∗
−

∗
τ ) Jij   

On the other hand we contract (4) by gij and using the above notations we set 

(6)     S ij = Sij + (2−2n)P ij. 

From (5) and (6) we get  

(7)    4n(n-1)Pij = (τ −τ )gij− (τ
∗
−

∗
τ )Jij 

Theorem 1. The tensor field Q defined as follows 

(8)     Q h
ijk = Rh

ijk + 
τ

4 1n n( )−
 (g ij δk

h 
− g ik δj

h + Jik Jj
h 
− Jij Jk

h) 

 −
τ
∗

−4 1n n( )
 (g ij Jk

h 
− g ik Jj

h 
− Jik δj

h + Jij δk
h) 

is invariant with respect to the map α:∇→∇. 
The proof follows from (4) and (7) immediately. 

Now let ∇ be a locally flat connection. Then evidently Q =0  and from Theorem 1 it 

follows Q = 0. So (8) implies 

  R(x, y, z, u) = 
τ

4 1n n( )−
 [g(x, u)g(y, z) − g(x, Ju)g(y, Jz) − g(y, u)g(x, z)  

(9)  + g(y, Ju)g(x, Jz)] + 
τ
∗

−4 1n n( )
 [g(x, Jz)g(y, u) + g(y, Ju)g(x, z) 

 − g(y, z)g(x, Ju) - g(y, Jz)g(x , u)]. 

Thus we have the following assertion. 

Theorem 2. Let M2n be in B and α:∇→∇defined by (2). If ∇  is locally flat, then M2n 
satisfies the identity (9). 

 Moreover from (9) we obtain Sij = 
τ

2n
g ij − 

τ
∗

2n
 J ij, i.e. M2n is an almost Einstein 

manifold.  
The class of B-manifolds which satisfies (9) has been appeared at first in [ 1 ] and further 

in [ 3 ]. In [ 1 ] it has been proved that in this class the totally real section curvature is 
absolutely constant . 

Now let have α:∇→∇defined by (2) but  
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(10)    ∇if j = 
τ

4 1n n( )−
 gij − 

τ
∗

−4 1n n( )
 Jij − fi f j + ji ff

~~
,    

∇i jf
~

 = 
τ

4 1n n( )−
 Jij + 

τ
∗

−4 1n n( )
 gij − fi jf

~
 − 

if
~

f j . 

Theorem 3. If ∇ satisfies (9) and f n be a decision of (10), then ∇ is locally flat ( n>2 ). 

Proof. The integrability condition of (10) is satisfied identically by virtue of (9) . So (10) 

has at least one solution. Then from (4), (7), (9) and (10) there follows R =0, so the theorem 
is proved. 
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