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ON AN J-CONNECTION ON A B-MANIFOLD

Georgi Dimitrov Djelepov, |va Roumenova Dokuzova

Let (M, g ,J ) be a Riemannian manifdltiwith a metricg and a structurd such that -id,
g( Ix, Iy ¥-9( X, ¥ ), X, ye XM, VJ=0 . Now we discuss another symmegHconnection

V, related with the connectiovi of g. If ﬁ =0, Whereﬁ is the curvature tensor oV
we get a known subclagd ], [ 3] of theB-manifolds. The inverse problem is discussed too.

A Riemannian manifoldV,, is in the classGB, of the so called generaliz&imanifolds
[2], if M5, admits an almost complex structudrand aB-metricg, i.e.
F=-id, g(Jx, Jy3-g(x y), X, ye XM.

If M is inGB andVJ=0, whereV is a Riemannian connection @fthenM is in the clas8
of theB-manifolds[ 4].
Let J°andgsbe the local coordinates dfandg respectively. We note b)ﬁ;l}sgsj and by

virtue of (1) we have&J;. So we can define another symmetric conneclibn whose
Ricci-Christoffel symbols are as follows:

) Ci=T*+ 1% T*=gf -3 f¥,

where Fis a vector field, f ¥=3* f and I;* are the Ricci-Christoffel symbols &f. By a
direct calculations we see, thal is an J-connection ( i.e.V 30 ), but it is not
metric-connection ( i.e§g¢0 ).

Now we consider the map:V—>§ defined by (2). LetR ,R be the curvature tensor

fields of V andV respectively. If7is the tensor of the affine deformation, thensitwell
known

(3) R "k = Rk + ViT i —VicT"y +T% T —T5 T'si

for the local coordinates oR , Rand Trespectively.
From (2) and (3) it follows

(4) R "k =R +acP - g P~ & P + 3 P,
whereP= V" + f ' - ?J? hooph =P g,

We note by S j = R %o » Sij = Rijp the local coordinates of corresponding Ricci tesiso
S andSof V andv. The functionst= S;¢' T = S;Jandt =S¢, ©° =S; Jare
the first and the second scalar curvature¥ofandV respectively.
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After a long calculation from (4) we find
(5) 2(1-n)S = 2(1-n)S; +4A-NPi— (T-1) gj + (T -T7)
On the other hand we contract (4) Byamd using the above notations we set
(6) Si=Si+ (2P
From (5) and (6) we get
(7) an(n-1p; = (T-T)gy— (T -1 )

Theorem 1. The tensor field) defined as follows

T
(8) Q"= Ry + m (958" 98"+ 3" 4 &)
“an(_n) 9 J'= g 3" Jdi" + 8¢

is invariant with respect to the mapV—>§.
The proof follows from (4) and (7) immediately.

Now let V be a locally flat connection. Then eviden@ =0 and from Theorem 1 it
follows Q= 0. So (8) implies

R(x, y, z, u)= [9(x, waly, 2)- g(x, Ju)g(y, Iz} gy, u)g(x, 2)

T
4n(n-1)

*

T
(9) +9(y, Ju)g(x, I+ an(n-1) [9(x, IZ)g(y, u) + gy, Ju)g(x, 2)

- g(y1 Z)g(X1 JU) - g(y! JZ)g(X 1]")

Thus we have the following assertion.

Theorem 2. Let My, be in B and a:V— V defined by (2). IfV is locally flat, thenMs,
satisfies the identity (9).

%

T T
2n?1 7 2

Moreover from (9) we obtais; = Jjj, i.e. My, is an almost Einstein

manifold.

The class oB-manifolds which satisfies (9) has been appeardilsatn [ 1 ] and further
in[ 3].In[ 1] it has been proved that in this class the totedigl section curvature is
absolutely constant .

Now let havex:V— V defined by (2) but
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*

T

T ~

10 Vi = - 4 ff

(10) j 4n(n-1) 0] 4n(n-1) Jj J+f,fj,
o . v 07T
"1 4n(n-1) e an(n—1) F"5 T K

Theorem 3. If V satisfies (9) anfl, be a decision of (10), theW is locally flat ( n>2).

Proof. The integrability condition of (10) is satisfigdentically by virtue of (9) . So (10)

has at least one solution. Then from (4), (7),a(® (10) there followsR =0, so the theorem
is proved.
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