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HYPERCOMPLEX  VARIABLES 
 

Stancho Genchev Dimiev,  Petja Ivanova Furlinska,  Nedelcho Velev  Milev 
 
 

The purpose of this note is to clarify some generalizations of the notion of complex number 
used in the papers [1] and [2]. We use  ad hoc  the term "hypercomplex number" having not a 
necessary erudition. 

 
Let  j  be a symbol. We shall consider degrees of  j,  denoted  jk   and  subordinate only to 

the following formal conditions 
j0  =  1   and   j2n  =  -1. 

By assumption we have an assotiative and commutative mutiplication for the degrees of  j,  
i.e.   jkj l  =  jk+l  ,  k, l  ∈ N.  The sequence   j0,  j1 , j2,  … , j2n-1    is constitued by different 
elements.          

 
 

   1.  THE ALGEBRA   R[1, i, i2, … , in] [1,j]    
 
We shall consider the vector space over the field of real numbers  R  consitituated by the 

following vectors 
x  =  x0  +  x1j   +  x2 j

2  +    …    +   x2n-1j
2n-1 , 

 
where   xk ∈ R,    k  =  0, 1, 2, … , 2n-1.  There is a natural multiplicative operation in  
R [ 1, j , j2,  … , j2n-1 ]   defined by the above introduced multiplication of the degrrees of  j, 
namely 

xy  =  (x0 + x1j + … + x2n-1j
2n-1)(y0 + y1j + … + y2n-1j

2n-1 )  = 
 

(x0y0- x1y2n-1-…-x2n-1y
1) + (x0y1+ x1y0 −… +      )j + …(x2n-1y0 + x2n-2y1 + …  )j2n-1 

 
So the vector space R[1, j, j2, …, j2n-1]  is a commutative and associative algebra with respect 
to mentioned multiplication.Having in mind that for each  x ∈ R[ 1, j, j2, … ,j2n-1]  we have 

x  =  (x0 +x2j
2 + … + x2n-2j

2n-2)  +  (x1 + x3j
2 + … + x2n-1j

2n-2)j    

and setting   j2  =  i   we  obtain 
 

x   =  (x0 + x2i  + … + x2n-2i
n-1 )   +   (x1 + x3i + …+ x2n-1i

n-1)j ,   or   x  =  x'  +  x''j ,  
 

where    x'  =  x0  + x2i  + … + x2n-1i
n-1  and    x''  =  x1  +  x3i  + ..  +  x2n-1i

n-1 .                                          
 
The multiplication in  R[1, j, j2, …, j2n-1]  induces a natural multiplication in R[1,i, …, in-1], 

namely the products  x'y'  and  x''y''.  With respect to the induced multiplication, the obtained 
algebra is commutative, associative and distributive.                   
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Having the algebra  A = R[1, i, i2, …, in-1],  we obtain the following represantation of   
R[1, j, j2, …, j2n-1]  over  R[1,i, i2, …, in]  

                      R[1, j, j2, …, j2n-1]   =  R[1, i, i2, … , in] [1,j] , 

where  A[1, j]  is the  vector space over  A  generated by  1 and  j .  

In the case  j2  = -1,  i.e.  n = 1, we have the isomorphisme  R[1, j]  =  C,   where  C  is the 
field of complex numbers. In this case the above remarked representation is banal,  we can 
accept that  R[1,i 0]  is isomorphic to  R. 

In terms of the mentioned representation, the operations in  R[1, i, i2, … , in] [1,j]  seem as 
follows 

                                    x  +  y  :=  (x' + y')  +  (x'' + y'')j , 
                                  xy : =   x'y' +  x''y''i  +  (x'y''  +  x''y')j, i = j2,  in = -1,  

where      x  =  x'  +  x'j     and      y  =  y'  +  y''j . 

The elements of  R[1, i, i2, … , in] [1,j]  will be called  hypercomplex numbers. It is to 
remark that here  i  is not a complex number when   n ≥ 2. 

               
 

2. CONJUGATION  IN  R[1, i, i2, … , in] [1,j] 
                                                                             _ 
Let  x ∈ R[1, i, i2, … , in] [1,j].  By definition     x  : =  x'  -  x''j .  Clearly, we have 

xxx→  
                                                                        _ 
PROPOSITION 1.  The mapping   x  →  x   is a linear and multiplicative involution of  

R[1, i, i2, … , in] [1,j]. 
                                             _____         _        _                        _ _ 
Proof.  It is easy o see that   x  +  y   =   x   +   y.  Calculating   x y   we get 
                       _ _ 

x y  =  (x' + (-x'')j)(y' + (-y'')j)  =  x'y'  +  x''y''i  -  (x'y'' + x''y')j, 
                                                                                           __      _ _    

which coincides with the conjugate of the product  xy,  i.e. we have   xy  =  x y    
                                       _ 
CONSEQUENCE:      x x  =  x'x'  -  x''x''i . 
    
It is to remark that  x'x'  and  x''x''  make  sense in the algebra  A = R[1, i, …, in-1]. 
                                                                   _                             _    
In the case  n = 1,  we have  x = x0 + x1j,  x  =  x0 - x1j, and  xx = x0

2 + x1
2. This is just the 

case of the complex numbers.              
 

3. HYPERCOMPLEX  AND  PSEUDOMODULE  STRUCTURES 

The underllying vector space of the algebra R[1, j, j2, …, j2n-1] is the real vector space R2n. 
We say that the algbra  R[1, i, i2, … , in] [1,j]  defines a hypercomplex structure on  R2n [3]. 
By definition, the  R[1,i, … , in-1]-valued mapping 

                                                        _ 
x  →  xx ,     x ∈ R[1, j, j2, … , j2n-1], 
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is called a pseudo-module structure on R[1, j, j2, … , j2n-1]. 
                              _ 
We set  D(x) : =  xx.  Clearly, we have  D(0) = 0,  where  0  is the origine of  R2n.  
The subset of  R2n , defined by all  x  for which  D(x) = 0,  is called  zero set of the pseudo- 

module structure  D  and will be denoted by  HD . Clearly,   0 ∈ HD ⊂  R2n. 
In the case the zero set  HD  reduces to the origine 0  the pseudo-module structure D  is 

called a module structure. 

PROPOSITION 2.  The zero set  HD  of  the pseudo-module structure  D coincides with the 
intersection of  n  quadratic surfaces in  R2n. 

Proof.  As  D(x)  =  x'2  +  x''2,  we have to calculate 
  

(x0  +  x2i  +  x2n-2i
n-1)2   +   (x1  +  x3i  +  … +  x2n-1i

n-1)2  
  

in  R[1, i, …, in-1]. The result of the mentioned calculation is of the form 

P0(x0,…,x2n-1)  +  P1(x0, … , x2n-1)i  +  …  +  Pn-1(x0, … , x2n-1)i
n-1, 

where  Pk(x0, … , x2n-1),  k = 0, 1, … , n-1,  are quadratic polynomials of the real variables  x0, 
… , x2n-1.  So  D(x) = 0  is equivalent to  the system 

P0(x0,…,x2n-1)  =  P1(x0, … , x2n-1)  =  …  =  Pn-1(x0, … , x2n-1)  =  0.  

For instance, in the case  n = 3  we have: 

P0(x0,x1,x2,x3,x4,x5)  =  x0
2  +  x1

2  -  2(x2x4  +  x3x5), 
P1(x0,x1,x2,x3,x4,x5)  =  x1

2  +   x5
2 -  2(x0x2 +  x1x2), 

P2(x0,x1,x2,x3,x4,x5)  =  x2
2  +   x3

2 -  2(x0x4 +  x1x5). 
 
PROPOSITION 3. The pseudo-module structure D is a mutiplicative R[1,i, …, in-1]-valued 

mapping, defined on R[1, j, j2, … , j2n-1],  which vanishes only on its characteristic set. 
Proof.  Let  x, y ∈ R[1, j, j2, … , j2n-1],  then  

)y(D)x(D)yy)(xx()yx)(xy()xy)(xy()xy(D ====  
Let  x  ∉ HD,  then  Dx) ≠ 0,  because in the oposite case it follows that  x ∈ HD    

REMARK.   For each  n,  2 ≤ n, the mapping    
xxx→  

defines a pseudo-module which is not a module. Only for  n = 1 the mentioned pseudo-module 
is a module, it is in fact  |z|2  with  z ∈ C.  

EXAMPLES:  1.)  n = 2,  R[1, j, j2, j3],  j4 = -1,  A =  R[1, i],  A is isomorphic to C. So  
R[1, j, j2, j3]  is isomorphic to  C[1, j]. 

This is the case considered  in the papers  [1]  and  [2]. 

  2.)  n=3,   R[1, j, j2, j3, j4, j5] ,   j6  = -1,   A = R[1, i, i2},   A  is isomorphic to  C x R. Now  
the considered 6-dimensional algebra R[1, j, j2, j3, j4, j5] is isomorphic to (C x R)[1, j]. 
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The table of multiplication in A is the following 

 
 1 i i2 

1 1 i i2 
i i i 2 -1 
i2 i2 -1 i 

 
3.)  n=4,  R[1, j, j2, j3, j4, j5, j6, j7],  j8 = -1, A = R[1, i, i2, i3], A  is isomorphic to CxC. Here 

the considered  8-dimensional algebra is isomorphic to  (CxC)[1, j].    
 
 

4. MATRIX REPRESENTATION OF R[1,i , … in-1][1, j] 

The considered algebra admits a natural matrix representation defined by the following 
mappings 

.  , ,... 

00010

00001

00000

01000

00100

 , 

00001
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01000

00100

00010

121222 −− →
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



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We denote by  (x'), (x''), (x), (D(x))  the corresponding matrices, respectively, of the 
element x', x", x, D(x). 
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
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4
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2
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



























−−
−−

−
−

=++++=→ −−

−−

−

−

−
−

153

153

32112

32112

1231

1231

12
12

5
5

3
31

000

000

000

000

000

000

)"("

xxx

xxx

xxx

xxx

xxx

xxx

JxJxJxxxx nn
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�

�
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�

�

�

�
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The mentioned matrix representation x → (x) is a homomorphism of R[1,i, … in-1][1, j] in 
the special algebra of all semi-circular  matrices  
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


















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−−−
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−

−−−
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−
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REMARK. In the case  n = 1,  we have the algebra  R[1, j]. The above mentioned  

homomorphism gives just the well known matrix representation for complex numbers 
 

 
The matrix  (2 x 2)  in the right side is an semiicircular matrix. 
 

5. A REAL-NUMBER REPRESENTATION OF THE PSEUDO-MODULE  STRUCTURE 
             

According to the above developed homomorphism the pseudo-module  D  get the matrix 
representation                                                  

                                                 (D(x))  =   (x'x'  -  x''x''J2).         
 
We set 
                                                      µ(x)  =   det(D(x)).   
 
The real non-negative numer  µ(x)  give a number-theoretic representation of the pseudo-

module structure D(x). The non-negative function  µ  is multiplicative:  µ(xy) = µ(x)µ(y).     
 
HADAMAR'S  TYPE  THEOREM.  The following inequalities hold  
 

det(x')2 ≤  n(x0
2   +  x2

2   +   …   +  x2n-2
2 ) ,  

 
det(x'')2 ≤ n(x1

2 + x3 
2 + …  + x2n-1

2) , 
 

∑
−

=

≤µ
1n2

0k

2

k
2 xn)x(

 
This theorem is valide for general matrices, not only for semi-circular ones. 
In the next we shall use a notion of norm  for semi-circular matrices, namely 
                                                                               2n-1 

(x)2  =     Σxk
2   

                 k=0 
                                                                                                
So, we have    µ2(x)  ≤  n (x)2. 
 

 
 









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10

10

xx

xx
ixxz
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4.  A COMPLEX-NUMBER REPRESENTATION FOR THE ALGEBRA  R[1, i] [1,j]. 
 
The elements of  R[1, i][1,j]  are of the form x  =  x0 + x2i  +  (x1 +  x3i )j ,  where  i = j2                            

In view that  R[1, i]  is isomorphic to the field of complex numbers  C,  the following 
complex-number presentation for the elements  x ∈ R[1, i][1,j]  holds 

x  →  z  +  wj,  where  z :=  x0 + x2i   and    w :=  x1 + x3i,  or  x' → z,  x'' → w. 

Now the operations for hypercomplex numbers, i.e. the elements of R[1, i][1,j], are 
represented by its complex number compounents 

x  +  y  =  z  +  u   +  (w  +  v)j,     xy  =   zu  -  wv   +  (zv  +  wu)j, 

where   y  =  u  +  vj ,   u,v ∈ C.                      
The conjugation in R[1, i][1,j] seems as follows wjzx −= , and the corresponding 

pseudo-module structure  D  is represented by ordinary complex numbers:  xx  =  z2  -  w2 i. 
Clearly, the equality  D(x) = 0   reduces to the equation 

z2  -  w2 i  =  0, 

which determines a complex surface in  CxC.  It is the zero set of the considered now 
hypercomplex structure. The corresponding pseudo-module  µ(x)  is determined by complex 
numbers      

µ2(x)  =   z2  -  w2i   ,     x  =  z  +  wj,   j4  =  -1. 

In terms of real nuber matrix presentation we have 
 

,
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00
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)"(    ,  

00

00

00

00

)'(
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13
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

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


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
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−

=
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


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





−
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=

xx
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xx
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x

xx

xx
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xx

x  

Calculating the corresponding to D(x) = x'x' - x''x''i  matrix (D(x))=(x')(x')-(x'')(x'')J2 
we get 
 





















+−−−−
+−−−−

+−+−
+−+−

=

31
2

2
2

0
2

3
2
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31
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2
2

0
2
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2
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20
2

3
2

131
2

2
2

0

20
2

3
2

131
2

2
2

0

20)(20

020)(2

2020

0202

))((

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xD  

Then (D(x)) = 0 is equivalent to the following system 

02         ,  02 20
2

3
2

131
2

2
2

0 =+−=+− xxxxxxxx  

The solutions of this system determine  the zero-set of the considered hypercomplex 
structure, now in terms of real quadratic polynomials.  
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5. POWER SERIES OF HAPERCOMPLEX VARIABLES  
 

Let   (x)  be a semi-circular matrix, which will be considered as a hypercomplex variable. 
We shall concider formal power series of the following kind  

 
S((x)) : =   Σ ak(x)k ,    where  ak  are real (complex) numbers,  k = 0, 1, 2, … . 

 
By definition   S((x))   is convergent  iff 

               
Σ ak(µ(x))k    ≤    + ∞     

                                                                k 
It is to recall that    µ((x)k)  =  (µ(x))k . 

 

EXAMPLE: The matrix  power series   ∑
k

k!/1 kx)(   is convergent for every fixed  matrix  

(x). 

Indeed,  we have   

∑
k

k!/1 µ(x)k  =  eµ(x).  

 We set                                       e(x) : =  ∑ !/1 k  (x)k   . 

Let  f(x)  be a real-valed or complex-valued function, defined on the set of hypercomplex 
numbers.     

We say that  f(x)  is real-analytic (complex-analytic) function of hypercomplex variable if 
the corresponding function of the matrix (x), i.e. f((x)),  admits a convergent power series 
matrix development  S((x)). 

We can remark that it is possible to develop the fundamental power series theory in the 
sketched above hypercomplex context.  

 
        7. CAUCHY-RIEMANN THEORY 

According to [1]  and  [2], a mapping   f: R4  →  R4   defines a pseudo-holomorphic 
function  f  on  R4  if the differential  df   commutes with  J,   J4 = -1,  i.e. 

                                                            df o J    =    J o df.  

The coordinate functions   fk  =  fk(x0, x1, x2, x3),   k = 0,1,2,3,  of  f   are satisfy a kind of 
Cauchy-Riemann equations,  namely 
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∂

 
 
Here we remark that the same definition make sense and in  R2n . 
 
Using an appropriate complexifications, it is shown in [2], that the real mapping described 

above can be represented as complex mappings of the form  C2 → C2 . In this setting the 
Cauchy-Riemann conditions change appropriately. 
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