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HYPERCOMPLEX VARIABLES

Stancho Genchev Dimiev, Petjalvanova Furlinska, Nedelcho Velev Milev

The purpose of this note is to clarify some germatibns of the notion of complex number
used in the papers [1] and [2]. We use ad hoctetm "hypercomplex number" having not a
necessary erudition.

Let j be a symbol. We shall consider degrees, oflenoted § and subordinate only to
the following formal conditions
=1 and ¥ = -1.
By assumption we have an assotiative and commatatitiplication for the degrees of j,
ie. fi' = ', k| eN. The sequence®jj*, % ...,f"* is constitued by different
elements.

1. THE ALGEBRA R[L, i, ..., M [1,]

We shall consider the vector space over the fiélceal numbersR consitituated by the
following vectors

X =% +X +txj®+ .o+ %4,
where xeR, k =0,1,2,...,2n-1. There is a natural mlittgtive operation in
R[1,j,f ....F™"] defined by the above introduced multiplicatiointhe degrrees of j,

namely
Xy = (XJ + le + ...+ X2n_]j2n_l)(y0 + yl] + .+ y2n-]j2n_l) —

(XoYor X1Yan1---Xonay?) + (Koy1+ XYoo + )i+ ..0n-Yo + XonY1 + oo

So the vector spad[1, j, j? ..., ™Y is a commutative and associative algebra witipeet
to mentioned multiplication.Having in mind that feach xe R[ 1, j, /% ... ."Y] we have

X = 000"+ 6nd ™) + 0at X"+ %0 )]
and setting 3 = i we obtain

X = (ot X o +xnd"™) + 00X+ Xnd )j, OF X = X+ X,

1

where X' = X +Xi +... +X%n4d"t and X" = X+ X +.. + %",

-2n-1] -n-l]’

The multiplication inR[1, j, % ..., induces a natural multiplication R[1,i, ..., i
namely the products x'y' and x"y". With redpe the induced multiplication, the obtained
algebra is commutative, associative and distrileutiv
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Having the algebraA = R[1, i, i%, ..., i"], we obtain the following represantation of
R[1,j, % .... ™Y over R[1,i, % ..., 1

RIL,j, % ... /™ = R[L,i0, % ..., L],
where A[1, j] is the vector space oveék generated by 1and j.

In the case ?j = -1, i.e. n =1, we have the isomorphisRE., j] = C, where C is the
field of complex numbers. In this case the aboweamked representation is banal, we can
accept thatR[1,i 9 is isomorphic toR.

In terms of the mentioned representation, the dgjp@sin R[1, i, i% ... , " [1,j] seem as
follows
X +y =ty) + (X YY),
xy:= Xy®Y'i + (xy' + xy)j,i=f, i"=-1,
where x =x"+Xxj and y =%Vy"j.
The elements ofR[1, i, i% ..., i [1,j] will be called hypercomplex numbert. is to
remarkthat here i is not a complex number wherk 2h

2. CONJUGATION INRI[1,1i, 4 ..., " [1,]

Let xe R[1,i, % ..., M [1,j]. Bydefinition x := x' - x"j .Clearly, we have
X —> XX

PROPOSITION 1. The mapping » X " is a linear and multiplicative involution of
R[4, i, % ..., " [L,j].

Proof. Itiseasyoseethat x + y = x y;CaIcuIating x_y_we get

Xy = X+ EONY + () = Xy + - (Y Xy,
which coincides with the conjugate of the produgt i.e. we have Xy = x_)Z_
CONSEQUENCE: XX = XX - X"X".

Itis to remark that x'x' and x"x" make seirsthe algebraA =R[1, i, ..., i".

In the case n=1, we have XXXy, X = % - X4, and XX = ¥ + x°. This is just the
case of the complex numbers.

3. HYPERCOMPLEX AND PSEUDOMODULE STRUCTURES

The underllying vector space of the algeBfa, j, j% ..., j*" is the real vector spade®".
We say that the algbr&[1, i, i%, ... , i [1,j] defines ahypercomplesstructureon R?" [3].
By definition, the R[1,i, ... , i"*]-valued mapping

X > xx, xeR[Lj ... ",
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is called gpseudemodulestructureonR[1, j, j% ... , ™.

We set D(x) : = XX. Clearly, we have @& 0, where 0 is the origine ofR?".
The subset oR?", defined by all x for which D(x) = 0, is callezerosetof the pseudo-
module structure D and will be denoted by .HClearly, 0 € Hp = R*"

In the case the zero setp Heduces to the origin@ the pseudo-module structure D is
called a module structure.

PROPOSITION 2. The zero setp Hbf the pseudo-module structure D coincides with
intersection of n quadratic surfacesRi".

Proof. As D(X) = X + x*, we have to calculate
(XO + X2| + in_zin_l)z + ()(l + X3i + ...+ )@n_lin—l)z

in R[1, 1, ..., ™. The result of the mentioned calculation is @& fhrm
Po(Xo. .- Xond) + PiXoy ooe s Yon)i + oo + Ra(Xo, -ov ) Yond)i™
where R(Xo, ..., %n1), k=0,1, ..., n-1, are quadratic polynomidishe real variables ¢x
co s Yone SO D(X) =0 is equivalent to the system
Po(Xgs---1Xon) = P(Xoy -+ » %n1) = -.. = Ra(Xo, -+ 5 Xny) = 0.0
For instance, in the case n =3 we have:
%+ %7 - 2006 + %Xs),

Xli + Xsi 200Xz + XiX2),
%+ % - 200Xat XiXs).

PO(XO,X]_,XZ, X31X41X5)
P]_(XO,X]_,XZ, X31X41X5)
PZ(XO,X]_,XZ, X31X41X5)

PROPOSITION 3. The pseudo-module structure D isiaipticative R[1,i, ..., i"*]-valued
mapping, defined oR[1, j, j% ..., ™%, which vanishes only on its characteristic set.
Proof. Let x, ye R[1,],j% ..., ™, then

D (xy)=(xy)(xy)=(xy)(3%y)= (X)(W)=D(x)D(y)
Let x ¢ Hp, then Dx)= 0, because in the oposite case it follows that Hp [
REMARK. For each n, 2 n, the mapping
X — XX

defines a pseudo-module which is not a module. @rlyn = 1 the mentioned pseudo-module
is a module, it is in facfz]* with ze C.

EXAMPLES: 1) n=2,R[1,], %, j*=-1, A= R[1, ], A is isomorphic taC. So
R[1, ], j% j7] is isomorphic toC[1, j].

This is the case considered in the papers [1] [&h

2) n=3, R[L,j, A%, i® =-1, A=R[1,i,i%, A isisomorphic toC x R. Now
the considered 6-dimensional algeRf, j, j% j°, j*, i°] is isomorphic to € x R)[1, j].
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The table of multiplication i is the following

1 i i
1 1 i 3
i i il -1
i i2 -1 i

3) n=4,R[L,j, A %4550 iB=-1,A=R[1,i,i4 i, A isisomorphic taCxC. Here
the considered 8-dimensional algebra is isomorghi€CxC)[1, j].

4. MATRIX REPRESENTATION ORR[L,i , ... "Y[1, j]

The considered algebra admits a natural matrixesgptation defined by the following
mappings

0 1 o -0 0 0 10 -0
0 010 -0 0 0010
j>Jd= 1.0 j2—>J2= 0 000 j2n—l_>J2n—l
0 000 ..1 -1 0 00 ...0
-1000 -0 0O -100 -0

We denote by (x), (x"), (x), (D(x)) the corresponding matrices, respectively, of the
elementx’, x", X, D(x)

Xo 0 Xy 0 - Xpp O

0 Xo 0 X, o 0 X
~Xon-2 0 Xo 0 - Xpq O

X (X) =X+ %32 #3344 %0 3% 2= 0 —Xpnp, O X v 0 Xy
— Xy 0 X 0 X 0

0 - X, 0 -x%x -~ 0

Xq 0 X3 0 Xonqa O

0 X 0 X3 o+ 0 X
~Xon1 0 x 0 X3 0

X' (X)) =%+ %333+ x53% 4 4%, 3 =] 0 =Xy O X, - 0 Xoug
— X3 0 X5 0 X 0
0 — X3 0 —-x -+ 0 Xq

The mentioned matrix representation> (x) is a homomorphism d®[1,i, ... "[1, j] in

the special algebra of all semi-circular matrices
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REMARK. In the case n = 1, we have the algelRil, j]. The above mentioned
homomorphism gives just the well known matrix reggretation for complex numbers

. Xo Xu
Z=Xo+IX: —
— X1 Xo

The matrix (2 x 2) in the right side is an seindalar matrix.

5. AREAL-NUMBER REPRESENTATION OF THE PSEUDO-MODBEL STRUCTURE
According to the above developed homomorphism geugo-module D get the matrix

representation
(@ - (XIXI _ X“X“a).

We set
u(x) = |det(DX))!.

The real non-negative numar(x) give a number-theoretic representation ofgheudo-
module structure D(x). The non-negative functipnis multiplicative: pu(xy) = u(x)u(y).

HADAMAR'S TYPE THEOREM. The following inequalés hold
[det()|2< n(Ixl? + [el? + .+ [xnal?),

ldet(x)| 2 < n(Ix |2+ Ixs |24+ ... +xomal?)

2n-1
2 2
pZ(x)<n> x|
k=0
This theorem is valide for general matrices, ndy éor semi-circular ones.

In the next we shall use a notion of norm for seirgular matrices, namely
2n-1

[l 12 = 2x?
k=0

So, we have p3(x) < n| ()| |2
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4. A COMPLEX-NUMBER REPRESENTATION FOR THE ALGEBRRIL, i [1,]].

The elements ofR[1, i][1,j] are of the form x = + %i + ( + Xi)j, where i=f
In view that R[1, i] is isomorphic to the field of complex nunmtbe C, the following
complex-number presentation for the elements {1, i][1,j] holds

X —> z + wj, where z:=gxtX%i and w:= x+ X3, or X'—>z, X"—> w.

Now the operations for hypercomplex numbers, ilee tlements ofR[1, i][1,j], are
represented by its complex number compounents

X+y=z+u +(wW+V)j, Xxy= zuw + (zv + wu)j,
where y = u + vj, uxC.
The conjugation inR[1, i][1,j] seems as followsX = Z— Wj, and the corresponding

pseudo-module structure D is represented by argicomplex numbersXX = Z - wWi.
Clearly, the equality D(x) =0 reduces to theampn

22 - wWi = 0,

which determines a complex surface i6xC. It is the zero set of the considered now

hypercomplex structure. The corresponding pseudduateou(x) is determined by complex
numbers

W) = [Z2-wil, x=z+wj 4= -1

In terms of real nuber matrix presentation we have

%o 0 x, O X 0 x3 O
0 0 x 0 X 0 X

(x)= o 2|, (x) = : d!
-X 0 x O -%X 0 x 0
0 -%x 0 X 0 -%x O

Calculating the corresponding to D(x) = x'x" - S“matrix (D(x))=(x)(x)-(x")(x")J
we get

X =X, +2X% 0 X=X +2%%, 0
O 2_ 2 2 0 2_ 2 2
(D00 = R X7 =% +2X%
~2%% —(%” = %) 0 X, =%, + 2% 0
0 ~2%% — (% = X3) 0 X =% +2%%

Then(D(x)) = 0 is equivalent to the following system
X =% +2%% =0, X7 = X3 +2%X, =0

The solutions of this system determine the zetoedethe considered hypercomplex
structure, now in terms of real quadratic polyndsia
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5. POWER SERIES OF HAPERCOMPLEX VARIABLES

Let (x) be a semi-circular matrix, which will lsensidered as laypercomplex variable
We shall concider formal power series of the follmgvkind

S((X)) : = Ta(x), where @ are real (complex) numbers, k=0, 1, 2, ... .
By definition S((x)) is convergent iff

2|6«|$(M(X))k s t+o

Itis to recall that p((x)") = @(X)~.

EXAMPLE: The matrix power seriesy 1/k! (x)* is convergent for every fixed matrix
k

(%)
Indeed, we have
S UK px)* = ¢,
k

We set We= Y1/K ()¢ .

Let f(x) be a real-valed or complex-valued fuantidefined on the set of hypercomplex
numbers.

We say that f(x) is real-analytic (complex-anialytunction of hypercomplex variable if
the corresponding function of the matrix (x), f(€x)), admits a convergent power series
matrix development S((x)).

We can remark that it is possible to develop timel&mental power series theory in the
sketched above hypercomplex context.

7. CAUCHY-RIEMANN THEORY

According to [1] and [2], a mapping R — R* defines a pseudo-holomorphic
function f on R if the differential df commutes with J,* -1, i.e.

dfoJ = Jodf.

The coordinate functions y f= fi(Xo, X1, X2, X%3), k =0,1,2,3, of f are satisfy a kind of
Cauchy-Riemann equations, namely

ofy oty _ oty o
OX, OX, OX OX

0 1 2 3

My Oty o, _ Oy

OX, OX, OXg 0%,
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g _ofy _ of, _ oy

OX, 0% 0%, OX,

oy __of, __of, __ofy

0%, - 0%, oX, 0X,
Here we remark that the same definition make sandén R?".

Using an appropriate complexifications, it is shawij2], that the real mapping described

above can be represented as complex mappings dotime C? — C? . In this setting the
Cauchy-Riemann conditions change appropriately.
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