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ON TRANSFORMATION OF AFFINED COHERENCES

G. Zlatanov, lv. Badev

Assume there is a mutual simple and fluxionablerespondence existing
between the points of two spaces of affined coheeennamely*An and

’An. When the validity of the conditioi¥v;;=0 for a random co-vector
from one of the spaces premises the validity of thendition for the

corresponding co-vector in the other space, we dshgre is a GMC-
correspondence (Generalized Metric Chebyshev Cqroeslence)
between the two spaces. Certain characteristicth&f above-mentioned
correspondence have been found. Research has adso bone on other
GMC-correspondences that are projective or conjegawith respect to a
bivalent tensor.

1. Basic facts.

Suppose there is a mutual simple and fluxionabfeespondence existing between two
separate spaces of affined coherence naMelyand?An. A joint coordinate system can be
introduced in which the corresponding points hayeeé coordinates.

Let us note the coefficients of coherence of treesp'An andAn respectivelyll“i'; and

21"; . The transition from one coherence into the oiheonsidered a transformation of the

coherences or, otherwise, a transformation of tvallel Transfer Law.
If V' is a random vector field, we have the followingeessions for the co-variant
derivates in the two coherences:

1 i i 1yi,s 2 i i 2yi,,S
w VvV =oVv+T Vv, VvV =0V+TWV
and for their difference they are:
@ ViV SV =T
where
i _ 2y 1y
(3) ks — st_ st

is the tensor of affined deformation [1. p. 128].

The connection between the tensors of the curvz%llaglgni and 2Rskmi respectively
belonging to the space®n and?An is
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4) ’ Rskm.i leskm.i +1V3Tkim _1V kTsIm + TstTkrpn B TkIstrF?] +218§<T;i3m

p

wherelS « denies the tensor of torsion of the spase [1. p. 130].

S
The independent vector fieldd (a=1,2...n) in the spacéén and?An determine the

network(vy,vs...v,) in these spaces. The mutual vectarsof the vectorsv' (a=1,2...n) are
o

definitions with the help of the following equation

'ﬁ_é‘ﬁ i'B_5i
(5) XV'_ o ’ (Xvk_ k)

Following [2] and [3] we shall call the network;(w,...v,)) a generalized metric network of
Chebysheyv, if fom=1,2...n. The following condition is satisfied:

a

a

In case of spac®n being a two-or-three-dimensional Rumanov’s spagedimensional
space of the condition (6) characterizes the géimedametric nets of Chebyshev, studied in
[4], [5] and [2] respectively.

A. P. Norden introduced the following definitionsdaproved the statements. [1].

Definition 1: A transformation of coherences which leaves unadt¢he geodesic lines in
spacesAn and?An is known as projective, the spaces are considengdctive of each other.
[1. p. 165].

Statement 1: SpacesAn and?An are projective between each other then and oely th
when the tensor of affined deformation satisfiesabndition:

[i sl _
) 5( mTk) =0
Statement 2: If there is aprojective correspondence betweensppaces having a

symmetric affined coherences, the tensor of affihefdrmation satisfies the condition [1. p.
166].

k km
(8) Tis :T..ispm
where
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— TS
pm n+1 Im

(9)

km _ ok com k em
@) T . is=0;0g +0:0
The properties of the tensor (10) have been studigd p. 166].

Let space$An and?An contain a non-singular symmetric tenbgr

Definition 2: Vectorsv'e*An and wSe?An are conjugated with respect to the terigor

if the condition [1. p. 173] is satisfied:

(11) hsVi w> =0

Definition 3: The coherencejsl"i'g and 2Fi'; are conjugated with respect to the tersgr

if case of parallel transfer along every cutvérom the fieldv' in spacéAn and fieldw' in
spac€’An, the condition (11) [1. p. 173] is satisfied.

Statement 3: Let the coherencejfi'; and Zri'; be conjugated with respect to the tensor
bis, then the conditions [1. p. 175]

S -1 S 2 S
(12) T;=b (5plvkbjm+mgj lv[ oBm)

are satisfied.

k Tk
(13) T = T

whereb b, =6..

The vector

1 n - 1
t=—-T¢¥=——— b (*"Vhb —='Vb
(14) i n+2 ki (n—l)(n+2) ( shq n i sk)

is called a Chebyshev’s vector polarity, determihgdhe tensob;s[1. p.175].
The covariant derivative of the mutual vect(\;rsof the vectors/ satisfies the condition
a a

(24
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2. Transformation of affined coherences.

Theorem 1. If for the mutual co-vector of a random vectoidie/ e ®An (a=1,2) the

conditions (6) are satisfied fora£1,2), the tensor of deformation meets the follayin
condition:

(16) [E] =0

Proof: Assume that for a random vector fiell € *An the conditions'V, vij="V, vij =0

a a
are satisfied. From (15) follows thag;; vs =0 , but Vi is a random co-vector, consequently,

S —

[ki] —
Conversely, let (6) and (16) be satisfied for ofithe space$An and?An, then (15) is met
identifically.

Definition 4: A transformation of coherences is called a GMfoiifa random co-vector

. a (24
V' e ®An from 'V, vij follows ?V, vij =0 and vice versa.
[24

Consequence 1: If there is a GMC-transformation between the spaga and®An, then a
random generalized metric Chebyshev network from oihthe spaces is transformed into a
generalized metric Chebyshev network in the othacs.

Proof: It follows from the definition of a generalized trie Chebyshev network [2], [7]
and Theorem 1.

Consequence 2: If there is a GMC-correspondence between two spaith affined
coherence, they have equal tensors of torsion.

Proof: It follows from Theorem 1.

Consequence 3: If there is a GMC-correspondence between two spasith affined
coherence and one of them is without torsion, therother one as well has no torsion.

Proof: It follows from Consequence 2.

Theorem 2: If there is a GMC and projective correspondende/den two spaces with
affined coherence, then the expressions (8) andré93atisfied for them.

Proof: Let there be a GMC and projective corresponderteden the spacéan and
2An. From (7) for the tensor of affined deformation el#ain
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1
DA T =———=(000° + 670, ) (Ten + T
a7 ki ik n+1( ki i k)( em me)

Taking into account (10), (16) and (17) we findMierep,, satisfies (9).
From (4) for the tensor of the curvature of spdéesand®An we find:

a9 “Ru ='Ry +'V Ty -V, Tg +2'SIT,

Consegquence 4: The tensor of affined deformation of two, projeetiwith respect to one
other, spaces with affined coherence without torskas the same structure as the tensor of
affined deformation of two projective between eather spaces with affined coherence and
equal tensors of torsion.

Proof: It follows from Theorem 1 and Theorem 2.

Consequence 5: If there is a GMC and projective correspondendevéen space®An and
2An and if the spac®An is equiaffined, then the following conditions aeisfied:

1
=— (6, Ine-'T"
(19) Py n+1( k an)

1 i ~l 1yi
wheree is the density of the equiaffined spaée.
Proof: Assume that there is a GMC and projective cornedpoce between the space with

affined coherencBn and the equiaffinetAn.
Since the equiafined spab&n has symmetric coherence, according to the consegquz,

!An also has symmetric coherence, i'€, =0.
What we know about the equiaffined spaga [1. p. 151] is that

ey ‘Te=0.ne R, =0

Taking into account (3), (9) and (21), we find (1®m (3), (18) and (21) we obtain (20).

3. Special conjugated transformations of affined cloerences.
Let a non-singular symmetric tendmy be given in spacégn and?An.

Theorem 3: If the spaces with affined coherences are prajedtetween each other and
their coherences are conjugated with respect ttetisomh;s, thenb;s satisfies the condition.
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1 -

(22) 1V(kb b (bk oDgym + Dy 1V(kbs)m)

s)i

Proof: Assume'An and®An are projective of each other and their coherences
conjugated in terms of tensbg. From (10), (13) and (17) we find

sm
23) ¢ e =T7an

where

2
@4  On=—"7Tam

n+1

Taking into account (12) and (24) we have:
~pm ~pm

i 2 S S 2 S
b (8, Vil =2 8" Vighgr) b (55" ViBan +—— 67V, lay) =

:T.Sf.nkiQ‘n

when we find:
_sm _pm
2 p

2b 1V(kh)m+n 1 be]mb :Ts.r.nkiqm

(25)

From (14) and (24) follows the equation

2n ™ 1
26) =3 b(V lvb)

m*™'pe

From the last two equations we have
~Sm 1 ~ pe

1 sm 1
V(kh)m:—lb T..ki v(pbm)e

Since (10) is satisfied, we finaly obtain (22).

Theorem 4: If there is a GMC-correspondence between the esices of spacésan and
An and the two coherences are conjugated with respélee tensob;s, thenbjs satisfies the
following condition

1 -
b (b.'V
n—l (ks

1 1
@n  Vibis biim = Ps "V ,bm)

[p
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Proof: Suppose the coherences of the two spaces areggat@juwith respect to the tensor
b;s and there is a GMC-correspondence between thespac

From (12) and (16) is follows that

—pm —pm

s 2 s s 2 s
b (5 1ths 15 1V[ph<]m) b (5 1V k:&m 15 1V[ph]m

when we find

- 1 ~ pm

1 sl sl
b V[kb _1b (5k V[pbl]m _5i v[pbk]m)
After contracting withb;s in the above equation (27) is obtained.
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