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In this paper an iteration procedure for receiving methods for solving system nonlinear 
equations is described. A convergence of iteration with order t is proved. The presented 
method is a generalization of the Newton’s classical method of solving system nonlinear 
equations. Numerical examples are provided. 
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In this paper we will consider the problem of solving equations in Rn . The problem of 

solving operator equations is explored by many authors (Kantorovich and Akilov [3], Ortega и 
Rheinboldt [2], Collatz [1]), but in practice the method of Newton–Kantorovich is most 
commonly applied and it is developed for the most frequently occurring case of equations in 

nR  (system of n  nonlinear algebraic or transcendent equations with n  variables). Here we 

will construct iteration procedures (processes) just for this case, which is most important in 
practice. To these procedures belongs classical Newton’s method. Here the Obreshkoff's 
iteration formula [4] is also generalized in nR . General iteration process, which possesses 

order of convergence, t  is constructed. From this process, Newton’s method ( 2=t ) and 
Obreshkoff’s method ( 3=t ) are received as particular cases. The rate of convergence of 
obtained methods is proved and its order of convergence is substantiated. The used technique 
is based on generalized Taylor’s formula. The results of numerical experiments when we 
apply methods of order II, III, IV and V are shown and they confirm the presented theory. 
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By this way we find that  
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use Einstein rule, according to which if in one product there is identical superscript and 
subscript index this means that we have the sum at this index from 1 to n . Using our denotes 
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where 10 << θ . Because of the continuity of partial derivatives of functions if  we can 

concede that positive number 2M  exists, such that, in sufficiently small neighborhood of 
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From the condition that the matrix { })1(
jif  is non-singular it follows that lif )1(  is a positive 

number.  
The estimate (9) is valid  
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Newton's method is received when  
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From this fact it follows that the method (10) is of second order with respect of ε .  

If in Taylor's formula we take into account the terms of second degree with respect of ih  we 
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near to { })1(
ijf  and consequently is a non-singular matrix. After replacing in (12) we receive  
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Analogously to previous considerations, we solve (13) with respect of jh  and obtain  
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which shows that method (15) is of third order with respect of ε .  
In the case when in Taylor's formula we take into account the terms of the third order 

with respect of sh , we receive  
 
(17) ( )4)1()1()1(

6

1

2

1
0 εi

lsj
ijsl

sj
ijs

j
iji Ohhhfhhfhff ++++= . 
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where *
4M  is a positive constant, the existence of which is guaranteed by sufficient 

smoothness of the functions. The inequalities (23) guarantee, that the new method (22) has 
fourth order of convergence with respect to ε . 
We will generalize both Newton's and Obreshkoff's method by exploring a general case when 

in Taylor's formula all the terms up to degree 1−t  with respect of sh  will be included. 
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Following the scheme by which Newton's and Obreshkoff's iteration methods were developed 
we suppose that in the above consideration we have determined  
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We form the following iteration method: 
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where all addends which contained multipliers sε  are dropped, when ts > . 
Taking into account the fact that functions if  are sufficiently smooth and that in above 

estimates all addends are of order ( )t
iO ε .  

We conclude that the following upper bound is valid  
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which proves that the order of convergence of this method is t .  

Numerical example. For the system 
1

13
3
21

4
1

2
22

2
1

=+

=+

xxx

xxx
, after applying the described above 

technique for receiving iteration methods at initial approximations 2]0[
1 =x  and 1]0[

2 −=x , we 

receive the following numerical results (the correct digits in the results are marked by bold 
type).  

 
Method (10) – Newton's method (II order of convergence) 

k  x k
1
[ ]  x k

2
[ ]  

0 2.000000000000000000 –1.000000000000000000 
1 1.471204188481675390 –0.434554973821989529 
2 1.160971103732131220 –0.000211512078262731 
3 1.030491163618779090 0.247285062098385618 
4 0.995486960519633108 0.302874141673445504 
5 0.992794407241188532 0.306422485001680910 
6 0.992779995253887578 0.306440446016981499 
7 0.992779994851123249 0.306440446511020431 
8 0.992779994851123249 0.306440446511020432 
9 0.992779994851123249 0.306440446511020432 
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Method (15) – Obreshkoff's method (III order of convergence) 

k  x k
1
[ ]  x k

2
[ ]  

0 2.000000000000000000 –1.000000000000000000 
1 1.236361502136902590 –0.102010783027205119 
2 1.016236675279352840 0.283124619837572002 
3 0.992806803517828091 0.306410483449974681 
4 0.992779994851170731 0.306440446510967770 
5 0.992779994851123249 0.306440446511020432 
6 0.992779994851123249 0.306440446511020432 

 
Method (22) (IV order of convergence) 

k  x k
1
[ ]  x k

2
[ ]  

0 2.000000000000000000 –1.000000000000000000 
1 1.132550738861533230 0.023572314322562824 
2 0.994110525451864892 0.303989504948906135 
3 0.992779944876562587 0.306440446474358190 
4 0.992779994851123249 0.306440446511020432 
5 0.992779994851123249 0.306440446511020432 

 

Method (30) at 5=t  (V order of convergence) 

k  x k
1
[ ]  x k

2
[ ]  

0 2.000000000000000000 –1.000000000000000000 
1 1.082281042482679530 0.123366196386319406 
2 0.992837748938471569 0.306361894605406281 
3 0.992779994851123249 0.306440446511020432 
4 0.992779994851123249 0.306440446511020432 
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