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NUMERICAL METHOD WITH ORDER't
FOR SOLVING SYSTEM NONLINEAR EQUATIONS

ANTON ILIEV ILIEV, ILIA PETROV ILIEV

In this paper an iteration procedure for receivingthods for solving system nonlinear
equations is described. A convergence of iteratigth ordert is proved. The presented
method is a generalization of the Newton’s clagsimsathod of solving system nonlinear
equations. Numerical examples are provided.
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In this paper we will consider the problem of solyiequations inR,. The problem of

solving operator equations is explored by manyastiKantorovich and Akilov [3], Ortega
Rheinboldt [2], Collatz [1]), but in practice theethod of Newton—Kantorovich is most
commonly applied and it is developed for the mosgdiently occurring case of equations in
R, (system ofn nonlinear algebraic or transcendent equations Withariables). Here we

will construct iteration procedures (processes) fas this case, which is most important in
practice. To these procedures belongs classicaltdfesv method. Here the Obreshkoff's
iteration formula [4] is also generalized iR,. General iteration process, which possesses

order of convergencet is constructed. From this process, Newton’s metfiod 2) and
Obreshkoff's method t(=3) are received as particular cases. The rate ofergence of
obtained methods is proved and its order of corererg is substantiated. The used technique
is based on generalized Taylor's formula. The tesaf numerical experiments when we
apply methods of order 11, 1ll, IV and V are shoand they confirm the presented theory.

Let the system of equations

) f,(X)=0j=12,...,n
be given. Supposed thdt and the partial derivatives of these functionswficiently high

order are continuous in the neighborhood of sofutidé,,<,,....£, ). Using Taylor's formula
we receive

(2) 0= fi(f): fi(i(k))Jr i (§i - X(jk))+oi (82),

where ng)(xﬂk),&i),...,&”k)) is a vector ofk ™ approximation to solutionh’ = &' —x}, and
=maxh’|.
¢ Ja>4 |
of,

with £ ={
o

} we denote the matrix of first partial derivative@sunctions f, .
X.
0

We will introduce norm of multidimensional matriy the following way:
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- miaXZZ"-Z|aijl---s

Let us now consider

ijl..s

|aijl.-,sajbI .c8< ||aj ""bI "l c® Zj:zll...zsjam_.s
S”aj””b' "..lcs miaxglz...§|amms S"aijl...s aj||||b' "lcS
By this way we find that
||aij,msajb'...cs s”amms aj””b'"..lcs :

3)
As a result from (3) we receiVM:maﬁhw and ||f (1)”: m_axzn:|fij(1)|. Supposed that
] 1 j=1

{fi(lj)} is a non-singular matrix. We denote wi{lh(i')'} reciprocal matrix of{fij(l)}. We will

use Einstein rule, according to which if in one quet there is identical superscript and
subscript index this means that we have the sutmsaindex froml to n. Using our denotes
this two conditions follow

(4) Py =6
and

(5) fo fi =07,
where 5! is a symbol of Kroneckes, = {](?’ii :I .

We multiply left and right side of (2) by,,' and we recieve:

0= fl (R )+ fo f O — %)+ F00,(62).  From  (5) it  follows that
0= f ,(Rg)+ 510 + £10,(2).

We denotef O, (52) with O' (52) and solve the last equations with respechbof In this
way we receive
h' —_fli¢ OI( 2)
©) =—fyf, +0'(e?).
Let us denote
- H) =—fdf,.
From (6) and (7) it follows that
o W oL+,

It is known, that

h'h',

0(82)_ 1[ %, j
i ~— 5 i Al
2\ KX %0 +0(E %)

where 0< 8 <1. Because of the continuity of partial derivativessfunctions f, we can
concede that positive numbe, exists, such that, in sufficiently small neighbmotd of
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solution £(&,,&,,....&,) inequalitiesOAXOF’J—;(| <M, are fulfilled for vj and VI . As a result we

receive the following upper bound
Ole
o)<3

From the condition that the matri{éi(lj)} is non-singular it follows thaHf(l) || is a positive

0’3(10’}(' |hj||hl|< n“Moe?

number.
The estimate (9) is valid

o o6 <1t o]

Newton's method is received when

(10) Xy = X + H7 -

After using relation (10) we obtain
5 =Xy = £° =X, —HS =h*—H = 0°(¢?).

Consequently, the estimates are fulfilled

-Jorfe?< grmae?] e

From this fact it follows that the method (10) f$econd order with respect ef.

S S
— Xiks1)

If in Taylor's formula we take into account thentsrof second degree with respecthbfwe
receive

1 . _
a1) 0= fy+ f%h! + 2 f,h'h +O %),
where
L = LS
%010 (6% )
. . — 4y 1| 2°f, e illes . .
It is evident that|Oi (g ]:_|—' h ||hJ h®l. As it was mentioned above the constant
6|X X x®

M, exists such th IL
X oxd o

<M, for everyl, j ands. Hence "O l|§%n3M353.
From (8) and (11) with made supposition we found

where for brevity we substitut®, (53)= e} (g ) 5 f (l)hJO'( )

ijl
Let {f(z)} be reciprocal matrix of the matrl{cf (2’} {f o, Llioy } The matrix{f(g)}

ijl

exists because in sufficiently small neighborhoédaution the matnx{fij(z)} is arbitrarily
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near to{fij(l)} and consequently is a non-singular matrix. Afegrlacing in (12) we receive
0=f, + f,2hi +0,(s°).

(13)

Analogously to previous considerations, we soh\& (fith respect oh’! and obtain
h' =H})+0'(s®),

i 0 ()

where we denoteH; =—f f, and O' (53): f 5,0, (53). Thereby analogue of Obreshkoff's
formula [4] for system of nonlinear equations isaiged

(15) X(Sk+l) = X(Sk) +H;3.
As in Newton's method, we found
£ =X, —HS =h*—H$ =5 x5, = 0%(c%).

From expression o, (53) we receive the following upper bound

o} <o)+ 2l n o)
On the other hand, we have
Z| fij(ﬁ)hj| < m_axZ| f,i ||hj| <enM,.
j Ik
Consequently, the estima”éijﬁl)hj || <&nM, is fulfilled.
From the obtained bounds it follows that

loe*] < %n3M353 +%mM 2%n2M ,e2 = Ensm +%n3(M 2)2}53d=ef|v|;g3
and
(16) &= x| =0l <[t mie.

which shows that method (15) is of third order wigspect ofe .
In the case when in Taylor's formula we take irtocoaint the terms of the third order

with respect ofh®, we receive

1 L1 - _
a7 0= f,+ ! + = f,0n'h* + = fh/h*h +O (*).
After using (14), the system of equations (17) ceomae

0= f, +[f”<l> +% f9H;3 +% fij(j’stH'zjhj
+% fij(sl)OS(gs)ﬂj +% f,& [05(83)H|2 +0' (gs)HZS +Os(£3b' (53)}1] +0, (54>.
For brevity we introduce a vect@, (g“) and the matrixfi“j) as follows:

0, (g“):% f00°(c* +% £,00°(z*)Hh! +% £,90' (¢°H3h!
L g0 b 4G,
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19) £ =102 f”(sl)H Sp> f”.g})H;H'2 :

Contacted writing of system is

0=f, + f,Ph) +0,(s*).
(19)

We solve (19) with respect df' and receive

(20) h’ =_f(13) fo— f(Jsio( )

Here {f(3)} is a reciprocal matrix of the matn%(f) } In this way the system (20) receives the
form

o b ZH+0i(e),

wherer(g“):—f(g)S S( ) andHJ =—f}°f,.
The new iteration method for solving system of imgdr equations is
Xy = X T H3 -
(22)
We constitute
S = Xy = E5 = Xy —HS =h* —H$ = 0%(¢*).

The following bounds are valid

2o e Yl

1 o a1
ode <3t o Jin'] +5

+—W£WO' “Jrslinf+5l e flos o' Wwﬂﬂﬁ%ﬂl
0 lmset« 2o mserag] 9 e
elnglmsfe +[o6)
and
o (g“]| =H— £9 hihsh'h™| < —||fj<;>m|| ,
from which it follows that
o <miet

(23)
-l <l <] g
where M, is a positive constant, the existence of whichgisaranteed by sufficient

smoothness of the functions. The inequalities @Brantee, that the new method (22) has
fourth order of convergence with respectsto
We will generalize both Newton's and Obreshkoffethod by exploring a general case when

in Taylor's formula all the terms up to degreel with respect ofh® will be included.
Taylor's formula is of the form

04y ©= f+f“(11)h1+2' fOhshz 1 3!f“<1};3h hzh +.. " )f,flg bz hes 4 0(s).
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Following the scheme by which Newton's and Obrefflskiberation methods were developed
we suppose that in the above consideration we tetermined
hi =HJ, +0' ("™

(25) Lrole)
and

t-1 ool
26 [ofe)|<M; e
Then, after replacin@j from (25) in (24) we receive

(27) 0= f + (f o += 2' fll(j)thIZZ +§ fll(].::-)zl3H 2 H |32 +..t (t }1) f||(1ﬂ|t,1HtI32Ht|32Htll:21 )hil
5 100" 42 18, (0% (e, + 00z, + 0 (¢ Hor (b

i) 3
PR Y [0 (6 HiE,HE,  HiS + .+ HE (e HE, ().

( 1) ”1'2 dt-1
O (gt_1)+ ok (gt'lbia (gt_l).. oy (Si(gt) .
The system (27) we write in the form
0=f, + fOht +0,(s"),

(28)
where we substitute

£ =10 +5 FOHPZ, +.b (t Y fi i HEH S, G
and

Oi( )=5 fu(jiolz( )']

P4, o, 0 0 e o e o

ot —— ! f M [O'Z(‘l) Hiz,HA, . H

( 1) ||1| g
Fo A HE e HE, () 0 (e )+ i + 5 )
The elements of reciprocal matrix qgf “)} we denote Wlthf('l)'l From the system (28) we

determineh

h = —ff_+ f O
(29) (t) 's (t) ( )
For brevity we substitutef ;O (& ( ) o" (g‘) andH;, =—f3f,.
We form the following iteration method:

Xesny) = Xgo + HE

(30) (k+1) (k) t-1

for solving of nonlinear system.
Let us form the expression

& =X —H =& =Xy =h*-HZ = Os(gt)-
Analogously to the above mentioned consideratioahave
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fole]< 1t ol
Sl ||||0' N R CC e
gl ot ]
i L (,1||||H431IIHH£1H--ﬂoi‘*(g“ll\+---]|h'1||+||0 )

o] -l o <o L0 e

and

where all addends which contained multipliefsare dropped, whes>t.
Taking into account the fact that functionfs are sufficiently smooth and that in above

estimates all addends are of or@(gt).
We conclude that the following upper bound is valid

31) ofe ] <mie,
where M, is a positive constant.
Using (31) we receive the inequalities

o%le' | <mie ]

which proves that the order of convergence ofishod ist .
3%, + x5 =1
X+ %% =1
technique for receiving iteration methods at imigipproximationsx® = 2 and x! = -1, we

receive the following numerical results (the cotrdigits in the results are marked by bold
type).

Numerical example. For the systerr{ , after applying the described above

Method (10) — Newton's method (Il order of convergg)

k X1 XM
1 2

0 2.000000000000000000 —1.000000000000000000

1 1.471204188481675390 —0.434554973821989529

2 1.160971103732131220 —0.000211512078262731

3 1.030491163618779090 0.247285062098385618

4 0.995486960519633108 0.302874141673445504

5 0.992794407241188532 0.306422485001680910

6 0.992779995253887578 0.306440446016981499

7 0.992779994851123249 0.306440446511020431

8 0.992779994851123249 0.306440446511020432

9 0.992779994851123249 0.306440446511020432
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Method (15) — Obreshkoff's method (Il order of eergence)

k qu X[zk]
0 2.000000000000000000 —1.000000000000000000
1 1.236361502136902590 —0.102010783027205119
2 1.016236675279352840 0.283124619837572002
3 0.992806803517828091 0.306410483449974681
4 0.992779994851170731 0.306440446510967770
5 0.992779994851123249 0.306440446511020432
6 0.992779994851123249 0.306440446511020432
Method (22) (IV order of convergence)
(K] [K]
K X X
0 2.000000000000000000 —1.000000000000000000
1 1.132550738861533230 0.023572314322562824
2 0.994110525451864892 0.303989504948906135
3 0.992779944876562587 0.306440446474358190
4 0.992779994851123249 0.306440446511020432
5 0.992779994851123249 0.306440446511020432
Method (30) att =5 (V order of convergence)
(K] (K]
K X X,
0 2.000000000000000000 —1.000000000000000000
1 1.082281042482679530 0.123366196386319406
2 0.992837748938471569 0.306361894605406281
3 0.992779994851123249 0.306440446511020432
4 0.992779994851123249 0.306440446511020432
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