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ON THE METRIC PROPERTIES OF SOME
CONJUGATE FUNCTIONS

Ivan Hristov Feschiev

The paper is devoted to the investigation of soomugate functions and the establishment
of their main properties. As an application thermpt upper estimation of their norm in L
at the most general assumptions possible for teeatso proved.

Introduction.

Let L (L,) be the space of the defined on the real a#ds - periodic summable (essen-
tially limited) real-valued functions with norm

©) ], =[], =T [foo|ax : [f

. =] . :sup\x/rai [f(3) -

Let f~%+i(ak coskx + b, sinkx) ; i"~i(—bk coskx + a, sinkx) be the Fourier series
k=1

k=1
expansions tof (x) and to the trigonometrically conjugate fqx) function f~(x) respec-

tively [1]. During the last decade our efforts hdeen intent on the solution of the following
extremal problem [2]:

(0.2) sup ” ?Hl = 4|—<~1 )

[fl.<*
where
03 K,=23 G _ [arctan——— dy =1166243616.
7o v+D)° sinh(zy/2)

is Favard’s constant. This fact is closely linkehva generalization of the theorem of Stein
and Weiss [3] (see also [4], th.1.10, p.27) comicgr metric properties of the conjugate cha-

racteristic functions of given sets on the interfld,27] . This extension was made in our
work [2] (th.1.2.).

The current paper appears to play the part of ditiad to the investigation of the problem
(0.2), (0.3) considered in [2].

Statement.

Further on we shall use the symbols and resultkefirticles [4, ch.l] and [2]. The letter
4 is used to denote Lebesgue’s measure. Since veethavork with 2z - periodic functions
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the short notationT =[O0, 2z] turns out to be more convenient. Sets in the farin
{x:f(X)>t, xeT}, {x: < f(X)<t, xeT},... are to be written for brevity as follows:
[f>t],[z<f <], ...

Now let introduce the set: Q=0(E)={g}, where EcT and
g(x)={+1for xeE;; O for xeE; -1 for xeE} (E; cT\E, E'= T\(EUE)).

The pivotal role in the investigation on the praoblg0.2), (0.3) (see [2]) fell to the following
magnitudes:

(1.1) Fllgiel-julll>vInED | (@0

0

(1.2) G(g;a) = 27r‘1]ody [arctg{[cosh(z|g(t)|/2)] /[sinh(zy / 2)T} dt, (a = 4E)
Besides for brevity we sh;II uEtiIize the notatigwE = a e (027).

(1.3) AX=Sk?Zsin() ;  B()=-3 (-D*kZsin(kx)

or its equivalents . .

(1.3) AX)=—[In[2sin¢/2)]dt ; B(X) = [In[2cos¢/2)]dt, (O<x<x).
0 0
Lemma 1.1. For every functiong € Q(E) the following estimate holds:
(1.4) FI|G|:E|<4r @)+ Bar2) }=¥,(a) (O<a<2q).

It is found [2] a sufficient condition for the sailon of the problem (0.2), (0.3). This is the
following inequality

(1.5) Fllg:Elsc@a (geaE) 0<a<2q).

1°.  Let g(x)={+1for xe (0, X ); =1 for xe (X,X,); Ofor xe(x,,27)}, where
0< X, <X, =27 —a< 2z . The conjugate functiog has the representation

(16) (¥ =n"Y Kk {2c08K(x~ %))~ cOSK(X~X,)) ~cosq)} .
k=1

which has zeros in the points

(1.7)  ay=x/2-al4+6; By=rm+x/2-ald-7,

5 =5(x;a) = arcsin{sirt (a/4)sin'(x, /2+a/4)} (0<x <27r-a 0<a<2r).
Taking into account the fact thaf(x) has zero mean value on T and using the formulas
(1.7) we can find the norg], :

”5"1 =27 H{2[A(fy — %) + A — )] -[ A+ By) — Ala+a,)] -
[A(By) - Ale)l} (0<x <27-a O<a<2z).

(1.8)

On the other hand we can easily establish
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(1.8)  F|§ [iE]=20{Ax) - A +a)+ A@)} (0<x <27-a).
In terms of the proven in [2] extension of the tleao of Stein and Weiss and the proper-
ties of the function §(x) one can calculate the norfd|, by two different means. Compari-

son of the obtained results leads to the equality

(1.10) G(g;a) = FI|g|; E]+ 4z *[dy[arctg{exp[#(g(t) - y) /2T ct ,
0 E

which immediately involves (1.5). In the same tithe formula

i G(§: a) = 4] arctgfsin(x, /2+ a/4)/ sinhizy/2)} dy + F|§l; E1- 4]

= 2%,(x, +a/2)+ F[|g[; E]-|d],

shows that|g], <4K,, (0O<x <2r-a O<a<2r).

Remark.The stated above method for proving of (0.2),)(@08 the considered here func-
tions {g} is obviously valid for every functiony which conjugateg keeps constant sign on
E.

Among other things the examination shows thaexF[|g;E]= F[|g,;E], where

X

g, = 0,(&x) is the function for whichx, =z —a/2. By means similar to those applied in the

investigation of the functions in examples 1-32jf pne can get all properties gf. Here we
shall provide only the main formulas:

(1.12) F[|8.:E]= 27 {A(r-a/2) - A(r +a/2) + Aa)}=
2771{2B(a/2)+ A@@)}= 47 'A@/2) = ¥,(a) (0<a<2x).

(1.13) |G|, = 47 {2B(») + Ay +al2)+ A(y —a/2)} (0<a< 27)

(1.14) G(§.;a) = 4K, + 47 { A@@l2) - 2B(y) - Ay +al2)— Ay —al2)} ,

where y = y(a) = arccosf sin®(a/4)] O<a<2z).
Meanwhile the zeros ofg, are in the pointsy, =y —al2; p,=2r—-al2-y.
Now we can prove the following important property

(1.15) min{41 -]} = min{2, (x +a/2) -]} = 4K, -], -
PLet  g(x)={+1for xe (0,%);-1for xe (X,,%,);0 for xe (x,,%,) U(%;,27);},  where

0<% <X, <X, <27 and X, — X + 27 — X, =a. The conjugate functiong has the following
representation

g(x) = ﬂ’lék’l {cosk(x—x,)) +Cosk(X—X,)) — COSK(X — X;) — COSKX)} .

It has zeros in the points
(1.16) oay=7/2+x,/12—-ald—v; p,=7nl2+x,/12—-ald+v ,
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v =v(X,X,;a) = arccos{sifa/4)sin(x,/2+al4—x, 12)sin"*(x, /2+al4)},

O<x <X, <X =2r+X,—-%—a O<a<2r).

Taking into account the fact thaj(x) has zero mean value on T by means of the formulas
(1.16) we can calculate the notd), -

”5"1 = 27[71{ A(By — %) + A(By — %) + AXs — Bo) — A(Bo)

+ A% —ap) + AX, — ) — AlX —ap) + Alag)}-
One can prove that for a fixed e (0.27): maxFﬂ§|; E]= Fﬂ§2|;E(2)], where 4E@ =a.
X1, Xa, %3

(1.17)

g,is the function for whichx, =7 -a/2,x, =x; Xy =27 —al2. In this connection
FH§2|; E(z)]z ¥, (a)(0<a<2r); maaxF"§2|; E(z)]z 2K, ata=7 (whena=r the function
g,(7;x) has the points of discontinuiy;z /2,737 )2 The norm of g,(ax) is
|9.], =87 {A(x/2-al4)+ A(x/2+al4)}. It takes its largest value, equal4&, at a=0.

The more important properties of the functiofis(a) and G(g,;a) are the following [2]:
Y,(X)=¥,(2r-x)0<x<7z); W¥,(0+0)=+xo, the graph of ¥, is upper convex,
27 *K,a<¥,(@) O<a<r); ¥,(d)<2r*Ka(r<a<2r);

G(g,;a) = 4Kl +4r {A@l2)+B(al2)-2[A(x12—-ald)+B(x /2—-al4)]}

(1.18) ¥,(a) <G(g,;a) O<a<2r).

Now we can prove the following important property
(1.19) min{41 - 3]} = min{2¥, (x, +a/2) - [§]} = 4K, -], -
3. Let ge Q(E) with xE =ae (027). We construct an intermediate functigg(x)

(taking only the values +1 and —1) for which orappropriate subsdt. c T holds
(1.20) Fﬂ’g;|;5]=o.5{Fﬂ§o|; E]+ Fﬂ’g‘0|;E'];, (E'=T\E),
where g, (x) ={+1, for xe (0,a); -1, for xe (a,27)} . Taking into account the properties of
the functiong, (x) :

G,(0) =27+ k *{cosk(x—a)) - coste)}

k=1

Fl,; El= 47 {2A@/2) - A@)};  F[§o;E']=47*{A(@) + 2B(a/2)}
and lemma 1.1 we establish the inequality
(1.21) Flaiel<Flafe] weaE)

from where follows the property: (i) either two nmitgdes Fﬂ§0|;E] and
Fﬂ§0|;E’] (E'=T\E) are both bigger or equal thanFﬂ§|;E], or (i)
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Flg.:E]< (or ») F[g|; E]< (or 2) F[g,; E’] for uE€ ©x) (or uE e[ ,27)) at which
Fﬂ§|; E]—FH§O|; E'(E)]SFH§O|; E(E')]— Fﬂ§|; E]. To combine two cases we turn to the func-
tion g,(x) ={+1, for xe (0,£); -1 for xe (£,27)} in (1.20) whereZ is suitably chosen.
On the other hand with the theorem of Stein ands#/¢see th.1.1 in [2]) we can easily ob-
tain
sin(uE /2)
exp(ny/2) £cos(uE[2)

After integration of both sides of (1.22) from 040 and with the help of (1.20)-(1.22) we
establish the inequality

(1.22) ,u[|§0| > y] N {:, =4 arctg

(1.23) Fla]; E]< 2[ arctgsin(uE /2)[sinh(zy/2)] } dy
0
The estimation (1.23) gives us an opportunity tienide definition
(1.24) FlaJ: E]= 27 “uE [ arctgf Alsinh(zy 1 2)] %} dy, (g < Q(E))
0

where the constant is suitably chosen. The existence offollows from the fact that the
integral in the right side of (1.24) is an increasfunction of 4. Taking into account (1.24)
and the property

(1.25) G(3;a) > 27 *K,a (0O<a<2r; geQ(E))
we make a conclusion that the inequality (1.5) w#l fulfilled from every g e Q(E) for
which 1= A(g;E) <1. In particular from (1.23) and (1.25) follows tHat5) holds for every

ge Q(E) at the conditionuE =ae[7z,2r). Moreover subsequent upon lemma 1.1. and
(1.25) immediately follows that (1.5) holds for eye geQ(E) satisfying

FH§|; E]S 27'K,a (see also (1.24)) 0B(F;a) > ¥, (a) .
So it remains unknown only the case
(1.26) 27 *K,a< F[G[E} G(§ia)<¥,(a) , O<a<7).

4°. In this section we shall develop a new approacipfoving of (1.5) when the function
g has a few points of discontinuity (in generalecase [2]). This method covers the above

wellgrounded patrticular cases.

Lemma 1.2. [2] For every g € Q(E) and an arbitrary constarit> 0 the following equal-
ities hold

(1.27) #F[g}; E]= F[4glE] ; 16(5;) = G(4G;a)

where G(Ag;a) = zﬂ*]c dy[arctg{cosh(z|g(t)/)[sinh(zy /24)] *} dt .
Given a functiong : Q(EE) we define the constant, >0 such that

(1.28) F[;E]= 2., (a) = F[4,G,;E@]
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Lemma 1.1. shows that, <1. By means of the generalization of the theoreiBtein and
Weiss (see th.1.2 in [2]) we easily reach

(1.29) FH§2|;E(Z)]:G(gz;a)+"§2”1_4k'l

(1.30) F[:E]= 6(@:a)+|g], - 4!

where | is the integral like those in (1.11). Wikle help of lemma 1.2 the equality (1.28) can
be written as

(1.31) (I8, ~4.8.].} - {41 - 4K,4,} = G(2,5,;2) - G(G; a) -

From (1.31) immediately follows the equivalencehd following pairs of inequalities
(1.32)g]], - [4.8.].} < (or >)41 - 4K A, — (or <) = G(4,3,;a) < (or >)G(T;a) .

By means of the property (1.18) and lemma 1.2 vgéyeget
(1.33) F[@]; E]= 2,%, (@) < 4,G(,;2) = G(4,3,;a)

Now we consider the two pairs of inequalities
(1.34) 2)G(4,3,;8)<G(G;a);  b)F[a;E]<G(d;a)

(1.35) 0)G(4,8,;8)>G(F:a);  d)F[E]>G(G:a).

It occurs obviously that a}» b) and d}—> c). Moreover the systems of inequalities (a,d)
and (b,c) are separately incompatible. It is apmthrérue for the first system. For the second
one its incompatibility grounds on the fact thattbae set of all functiong € Q(E) satisfying

the condition b), the differencdl —|g||, takes its smallest value (equal m21—||§2||1) at
g =g,. The proof of this is based on the propertiestg},(1.19), some ideas in the proof of
lemma 1.1 [2] and the inequalityG(g,;a) - ¥,(a) < G(g,;a) - ¥,(a) (O<a<2r). So the

pairs of inequalities both in (1.34) and in (1.35 equivalent.
Various examples show that for every fixad (0,2z) there exists an uncountable set of

functions (particularly satisfying (1.26)) for whiche correlations (1.34) hold. This fact is
significant for the following assertion: if for &éd @ we assume the existence of a function
g € Q(E) for which holds (1.35) then by deformation gf (by means described in the proof

of lemma 1.1. [2]) we can ensure both an uncouataét of functionsg satisfying (1.35) and
an uncountable set of functiong satisfying (1.34). Keeping the above assumptidnse
choose an infinite sequendey, } , convergent tog,, such that

(1.36) G(439,;@) > G(G,;a) (n=12...); G(4,0,;a)=G(gp;a)

(At the assumption g, = —('g'(JEQ one can reach a discrepancy). Subsequent upon the
equivalence (1.35) we will havE"§n|; E‘”)]z G(9,;a) («E™ =a), from where after a limit

passage we will obtairFH§0|; E(O)]z G(9,;a) (kE@ =a).
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On the other hand the equivalence (1.34) immedidids to the inverse inequality
Fﬂ§0|; E(O)]< G(g,;a) - Also we can reach a discrepancy if we take thengtinequality b).
So there is no boundary case. In other words tiereo function g € Q(E) satisfying
G(4,0,;a) =G(g;a) or FH§|; E]=G(§ ;a). Every function g e Q(E) can satisfy only
(1.34) or (1.35) without equality. Practical exasgpbhow that only (1.34) is valid.

Conclusion.

In this paper there is proved the following [2]
Theorem. If f L, and|f| <1 the following estimation holds

(1.37) “ FHi < 4K, = 4.664974464.

The equality is achieved for all functionfse Q(E) (#E =0) which satisfy the condition
u f>0lNT=r.
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