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ON THE METRIC PROPERTIES OF SOME 
CONJUGATE FUNCTIONS 

Ivan Hristov Feschiev 

 
The paper is devoted to the investigation of some conjugate functions and the establishment 
of their main properties. As an application the optimal upper estimation of their norm in  L  
at the most general assumptions possible for them is also proved.1  

 

Introduction. 

Let )( ∞LL  be the space of the defined on the real axis   π2 - periodic summable  (essen-

tially limited) real-valued functions with norm   
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f  be the Fourier series 

expansions to )(xf   and  to the trigonometrically conjugate to )(xf  function )(
~

xf  respec-

tively [1]. During the last decade our efforts have been intent on the solution of the following 
extremal problem [2]: 
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is Favard’s constant. This fact is closely linked with a generalization of the theorem of Stein 
and Weiss  [3] (see also [4], th.1.10, p.27) concerning metric properties of the conjugate cha-
racteristic functions of given sets on the interval  ]2,0[ π . This extension was made in our 

work [2] (th.1.2.).  
The current paper appears to play the part of an addition to the investigation of the problem 

(0.2), (0.3) considered in  [2]. 

Statement.   

Further on we shall use the symbols and results of the articles  [4, ch.I] and [2]. The letter  
µ   is used to denote Lebesgue’s measure. Since we have to work with π2 - periodic functions 
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the short notation ]2,0[ π=T  turns out to be more convenient. Sets in the form of 

},)(:{ Txtxfx ∈> , ,)(:{ txfx <≤τ  ...},Tx∈  are to be written for brevity as follows: 

][ tf > , ][ tf <≤τ , … 

Now let introduce the set:  { }gE =Ω=Ω )( , where TE ⊂  and  

}for1;for0;for1{)( 1 ExExExxg ′∈−∈∈+=  ( E\TE1 ⊂ , =′E  )(\ 1 EET ∪ ). 

The pivotal role in the investigation on the problem  (0.2), (0.3) (see [2]) fell to the following 
magnitudes: 
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Besides for brevity we shall utilize the notation: )2,0( πµ ∈= aE .  
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or its equivalents  
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Lemma 1.1. For every function )(Eg Ω∈  the following estimate holds: 
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It is found [2] a sufficient condition for the solution of the problem  (0.2), (0.3). This is the 
following inequality 
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which has zeros in the points  
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Taking into account the fact that )(~ xg  has zero mean value on T and using the formulas 

(1.7) we can find the norm 
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On the other hand we can easily establish 
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In terms of the proven in [2] extension of the theorem of Stein and Weiss and the proper-
ties of the function  )(~ xg  one can calculate the norm 

1
~g  by two different means. Compari-

son of the obtained results leads to the equality 
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which immediately involves (1.5). In the same time the formula 
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Remark. The stated above method for proving of (0.2), (0.3) for the considered here func-
tions }{ g  is obviously valid for every function g  which conjugate g~  keeps constant sign on 

E. 
Among other things the examination shows that =];~[max

1

EgF
x

 ];~[ 1 EgF , where 

);(11 xagg =  is the function for which .2/1 ax −=π  By means similar to those applied in the 

investigation of the functions in examples 1-3 of [2], one can get all properties of 1g . Here we 

shall provide only the main formulas: 
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Meanwhile the zeros of  1
~g  are in the points ;2/0 a−= γα   γπβ −−= 2/20 a . 

Now we can prove the following important property 
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)}4/2/(sin)2/4/2/sin()4/(arccos{sin);,( 1
1

2121 axxaxaaxx +−+== −νν ,   

)20;20( 12321 ππ <<−−+=<<< aaxxxxx . 

Taking into account the fact that )(~ xg  has zero mean value on T by means of the formulas 

(1.16) we can calculate the norm 
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~g : 
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One can prove that for a fixed )2.0( π∈a : [ ] [ ])2(
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2g is the function for which ;;2/ 21 ππ =−= xax     2/23 ax −= π . In this connection  
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The more important properties of the functions )(2 aΨ  and );~( 2 agG  are the following [2]: 
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Now we can prove the following important property 
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[ ] [ ] [ ]EgForEgForEgF ′≥≤≥≤ ;~)(;~)(;~
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On the other hand with the theorem of Stein and Weiss (see th.1.1 in [2]) we can easily ob-
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After integration of both sides of (1.22) from 0 to ∞  and with the help of (1.20)-(1.22) we 
establish the inequality 
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where the constant λ  is suitably chosen. The existence of λ  follows from the fact that the 
integral in the right side of (1.24) is an increasing function of λ . Taking into account (1.24) 
and the property 
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wellgrounded particular cases.  

Lemma 1.2. [2] For every  )(Eg Ω∈  and an arbitrary constant 0>λ  the following equal-
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Lemma 1.1. shows that 12 ≤λ . By means of the generalization of the theorem of Stein and 

Weiss  (see th.1.2 in [2]) we easily reach 
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Various examples show that for every fixed )2,0( π∈a  there exists an uncountable set of 

functions (particularly satisfying (1.26)) for which the correlations (1.34) hold. This fact is 
significant for the following assertion: if for a fixed a  we assume the existence of a function 

)(Eg Ω∈  for which holds (1.35) then by deformation of g  (by means described in the proof 
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On the other hand the equivalence (1.34) immediately leads to the inverse inequality 
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So there is no boundary case. In other words there is no function )(Eg Ω∈  satisfying 
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(1.34) or (1.35) without equality. Practical examples show that only (1.34) is valid.  

Conclusion. 

In this paper there is proved the following [2] 
Theorem. If ∞∈ Lf  and 1≤
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The equality is achieved for all functions )0()( =Ω∈ EEf µ   which satisfy the condition 

πµ => Tf ∩]0[ . 
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