ЮБИЛЕЙНА НАУЧНА СЕСИЯ – 30 години ФМИ ПУ "Паисий Хилендарски", Пловдив, 3-4.11.2000

QUASILINEARIZATION OF A BOUNDARY VALUE PROBLEM FOR IMPULSIVE DIFFERENTIAL EQUATIONS

S. G. Hristova*, G. K. Kulev*

In this paper we study the existence and approximation of solution for nonlinear impulsive differential equations with fixed moments of impulsive perturbations. Using quasilinearization technique we obtain a monotone sequence of approximate solutions that converges quadratically to a solution.

AMS subject classification: 34C50, 34A37, 34A45

Consider the impulsive differential equation

(1)
$$x' = f(t, x), t \in [0, T], t \neq t_k, k = 1, ..., p$$

(2)
$$\Delta x \Big|_{t=t_k} = I_k(x(t_k)), k = 1, \dots, p$$

with boundary condition

(3) Mx(0) + Nx(T) = C

where $x \in \mathbf{R}$, $f:[0,T] \times \mathbf{R} \to \mathbf{R}$, $I_k: \mathbf{R} \to \mathbf{R}$, k=1,...,p, M, N, and C are real constants, and $\{t_k\}_{k=1}^p$ are fixed points, such that $0 < t_1 < t_2 < ... < t_p < T$ and $\Delta x \Big|_{t=t_k} = x(t_k^+) - x(t_k^-)$.

Let PC([0,T],**R**) denote the set of all functions $u:[0,T] \rightarrow \mathbf{R}$ that are piecewise continuous, with points of discontinuity of the first kind t_k , k=1,...,p, at which they are continuous from the left.

Let $PC^1([0,T], \mathbf{R})$ denote the set of all functions $u \in PC([0,T], \mathbf{R})$, that are continuously differentiable at all $t \in [0,T]$, $t \neq t_k, k=1,...,p$, and for which the limits $u'(t_k - 0) = \lim_{t \to 0^-} u'(t), k = 1,...,p$ exist.

Definition 1: The function $\alpha \in PC^1([0,T],\mathbf{R})$ ($\beta \in PC^1([0,T],\mathbf{R})$ is called **lower (upper)** solution of the boundary value problem (1) - (3), if the following inequalities hold

(4) $\alpha''(t) \leq f(t, \alpha(t)) (\beta''(t) \geq f(t, \beta(t)) \text{ for } t \in [0,T], t \neq t_k, k=1,...,p,$

(5)
$$\Delta \alpha \Big|_{t=t_k} = \alpha(t_k^+) - \alpha(t_k^-) \le I_k(\alpha(t_k))$$
$$\left(\Delta \beta \Big|_{t=t_k} = \beta(t_k^+) - \beta(t_k^-) \ge I_k(\beta(t_k))\right) k = 1, \dots, p$$

and the boundary condition

 $M\alpha(0)+N\alpha(T)=C (M\beta(0)+N\beta(T)=C)$

* Department of Mathematics, University of Plovdiv "P. Hilendarski", Plovdiv, Bulgaria

also holds.

Usually, the lower and upper solutions are ordered and either $\alpha(t) \le \beta(t)$ or $\alpha(t) \ge \beta(t)$, $t \in [0,T]$.

Definition 2: The sequence $\{u_n\}_{n=0}^{\infty}$ of functions $u_n:[0,T] \to \mathbb{R}$ $(u_n \in \mathbb{C}[0,T])$ is called **quadratically convergent** to the function $u:[0,T] \to \mathbb{R}$, $(u \in \mathbb{C}[0,T])$, if there exists a constant $\lambda > 0$, such that

$$||u_n - u|| \le \lambda ||u_{n-1} - u||^2, n = 1, 2, ...,$$

where $||u|| = \sup_{t \in [0,T]} |u(t)|$.

Let the functions $\alpha, \beta \in PC^1([0,T], \mathbf{R})$ are such that $\alpha(t) \leq \beta(t)$ for $t \in [0,T]$. Define the sets $S[\alpha, \beta] = \{u \in PC^1([0,T], \mathbf{R}): \alpha(t) \leq u(t) \leq \beta(t) \text{ for } t \in [0,T]\},$

$$\Omega[\alpha,\beta] = \{(t,x) \in \mathbb{R}^2 : t \in [0,T], \ \alpha(t) \le x \le \beta(t)\}.$$

We say that the conditions (A) hold, if the following conditions are fulfilled:

- **A1**. The functions $\alpha, \beta \in PC^1([0,T], \mathbb{R})$ are lower and upper solutions respectively of the boundary value problem (1)-(3), such that $\alpha(t) \leq \beta(t)$ for $t \in [0,T]$.
- **A2**. The function $f:\Omega[\alpha,\beta] \to \mathbf{R}$ is twice continuously differentiable with respect to its second argument on $\Omega[\alpha,\beta]$.
- **A3**. The functions $I_k:[\alpha(t_k),\beta(t_k)] \to \mathbb{R}$, k=1,...,p are twice continuously differentiable in $[\alpha(t_k),\beta(t_k)]$.
 - A4. The constants M and N are such that

MN<0 and
$$\left|\frac{N}{M}\right| \le \exp(LT)$$
,

where $L = \sup \{ f'_x(t, x) | : (t, x) \in \Omega[\alpha, \beta] \}.$

A5. The following inequality holds:

$$\int_{0}^{T} f_{x}'(t, x(t))dt \le \delta < 0 \text{ for } x \in S[\alpha, \beta].$$

A6.
$$f''_{xx}(t,x) \ge -2K$$
, K>0 for $(t,x) \in \Omega[\alpha,\beta]$ (6)

A7.
$$I''_k(x) \ge -2T_k$$
, $T_k > 0$ for $x \in [\alpha(t_k), \beta(t_k)]$, $k=1,...,p$. (7)

Define the set

$$\mathbf{W} = \{(t, x, y) \in \mathbf{R}^3 : t \in [0, T], \ \alpha(t) \le y \le x \le \beta(t)\}$$

and consider the function $g:W\rightarrow \mathbf{R}$ defined by

$$g(t, x, y) = f(t, y) + f'(t, y)(x - y) - K(x - y)^2$$
 for $(t, x, y) \in W$.

Clearly f(t,x)=g(t,x,x) for $(t,x)\in\Omega[\alpha,\beta]$.

Let $t \in [0,T]$ and $x,y,z \in \mathbb{R}$ are such that $\alpha(t) \le z \le x \le y \le \beta(t)$. Then

(8)
$$g(t,y,z)-g(t,x,z) = f_x'(t,z)(y-x)-K(y+x-2z)(y-x) \ge -(L+2KP)(y-x)$$

where $P=\sup\{\beta(t)-\alpha(t): t\in[0,T]\}$.

Define the sets

$$W_k = \{(t, x, y) \in \mathbb{R}^2 : \alpha(t_k) \le y \le x \le \beta(t_k)\}, k=1, \dots, p$$

and consider the functions $h_k: W_k \rightarrow \mathbb{R}$, k=1,...,p defined by $h_k(x,y)=I_k(y)+I'_k(y)(x-y)-T_k(x-y)^2$, $(x,y)\in W_k$.

Clearly $I_k(x) = h_k(x,x)$ for $x \in [\alpha(t_k), \beta(t_k)]$. Furthermore, if $\alpha(t_k) \le z \le x \le y \le \beta(t_k)$ then

(9) $h_k(y,z) - h_k(x,z) = I'_k(z)(y-x) - T_k(y+x-2z)(y-x) \ge -(S_k+2T_kP)(y-x)$ where $S_k=\sup\{|I_k(x)|:x \in [\alpha(t_k),\beta(t_k)]\}, k=1,...,p$.

We will use the following lemma:

Lemma 1: (Theorem 16.2, [1].) Assume that for $t \ge t_0$ the following inequality holds:

$$u(t) \leq a(t) + \int_{t_0}^t b(s)u(s)ds + \sum_{t_0 < t_k < t} \beta_k u(t_k) ,$$

where $u,a,b \in PC(\mathbf{R}_+,\mathbf{R}_+)$, $\beta_k \ge 0$, k=1,2,..., and $0 < t_0 < t_1 < ... < t_k < ...$ are fixed numbers. Then for $t \ge t_0$ the following inequality holds:

$$u(t) \le a(t) + \int_{t_0}^{t} a(s)b(s) \prod_{s < t_k < t} (1 + \beta_k) \exp\left(\int_{t_k}^{t} b(\tau)d\tau\right) ds +$$

$$+ \sum_{t_0 < t_k < t} a(t_k)\beta_k \prod_{t_k < t_j < t} (1 + \beta_j) \exp\left(\int_{t_k}^{t} b(\tau)d\tau\right)$$

Consider the impulsive differential equation

(10) $\dot{\mathbf{X}} = g(t, x, \alpha(t)), t \in [0,T], t \neq t_k, k=1,...,p$

(11)
$$\Delta x\Big|_{t=t_k} = h_k(x(t_k), \alpha(t_k)), k=1,...,p$$

We are going to prove the following lemma for existence of a solution of the boundary value problem (10), (11), (3).

Lemma 2: Suppose that conditions **A1-A4**, **A6**, and **A7** hold. Then the boundary value problem (10), (11), (3) has a solution $x \in S[\alpha, \beta]$.

Proof: From the definition of the function g and inequalities (4) and (6) it follows that for $t \in [0,T]$, $t \neq t_k$, k=1,...,p we have the inequalities

(12) $\alpha'(t) \le f(t, \alpha(t)) = g(t, \alpha(t), \alpha(t))$

and

$$\beta'(t) \ge f(t, \beta(t)) = f(t, \alpha(t)) + f'_x(t, \beta(t)) [\beta(t) - \alpha(t)] + \frac{1}{2} f''_{xx}(t, \xi(t)) [\beta(t) - \alpha(t)]^2 \ge g(t, \beta(t), \alpha(t)),$$

where $\alpha(t) \le \xi(t) \le \beta(t)$, $t \in [0,T]$.

From the definition of the functions h_k and inequalities (5) and (7) it follows that for k=1,...,p we have the inequalities

(14)
$$\Delta \alpha \Big|_{t=t_k} \leq I_k(\alpha(t_k)) = h_k(\alpha(t_k), \alpha(t_k))$$

and

$$(15) \quad \Delta\beta\Big|_{t=t_k} \geq I_k(\beta(t_k)) = I_k(\alpha(t_k)) + I'_k(\alpha(t_k)) \left[\beta(t_k) - \alpha(t_k)\right] + \frac{1}{2} I''_k(\xi_k) \left[\beta(t_k) - \alpha(t_k)\right]^2 \geq h_k(\beta(t_k), \alpha(t_k))$$
where $\xi_k \in (\alpha(t_k), \beta(t_k))$.

From (12) -(15) it follows that the functions α and β are lower and upper solutions respectively of the boundary value problem (10), (11), (3).

Define the operator F on $S[\alpha, \beta]$ by the equality

(16)
$$Fx(t)=CAexp[-(L+2KP)t]+\int_{0}^{T}G(t,s)q(t,x(s))ds +$$

$$+\sum_{k=1}^{p}G(t,t_{k})h_{k}(x(t_{k}),\alpha(t_{k}))$$

for $x \in S[\alpha, \beta]$ and $t \in [0,T]$, where

(17) $A=[M+Nexp(-(L+2KP)T)]^{-1}$,

 $q(t,u)=g(t,u,\alpha(t))+(L+2KP)u, (t,u)\in\Omega[\alpha,\beta]$

(18)
$$G(t,s) = \begin{cases} AM \exp[-(L+2KP)(t-s)], 0 \le s < t \le T\\ (AM-1)\exp[-(L+2KP)(t-s)], 0 \le t \le s \le T \end{cases}$$

Clearly if $x \in S[\alpha, \beta]$ and x(t) = Fx(t) for $t \in [0,T]$ (i.e. x is a fixed point for the operator F), then x = x(t) is a solution of the boundary value problem (10), (11), (3).

We are going to show that $G(t,s) \ge 0$ for $t,s \in [0,T]$.

Indeed, from (17) it follows that

A=[M(1-
$$\left|\frac{N}{M}\right| exp(-(L+2KP)T))]^{-1}$$
, or AM[1- $\left|\frac{N}{M}\right| exp(-(L+2KP)T)]=1$

By A4 we have that

$$\left|\frac{\mathsf{N}}{\mathsf{M}}\right| exp(-(\mathsf{L}+2\mathsf{KP})\mathsf{T}) \le 1$$

Therefore AM>0 and AM-1=-ANexp(-(L+2KP)T) \geq 0, and from these inequalities, using (18), we have that $G(t,s)\geq 0$ for $t,s\in [0,T]$. From inequality $G(t,s)\geq 0$ and the inequality (8) and (9) it follows that the operator F is monotone non-decreasing, i.e. for $x,y\in S[\alpha,\beta]$ and $x(t)\leq y(t)$ for $t\in [0,T]$ we have $Fx(t)\leq Fy(t)$ for $t\in [0,T]$.

Therefore F:S[α , β] \rightarrow S[α , β], and by Shauder's Theorem there exists a function $x \in$ S[α , β] such that x=Fx. As we noted before this means that x=x(t) is a solution to the boundary value problem (10), (11), (3).

This complites the proof of Lemma 2.

We are going to justify a method for constructing a monotone sequence of piecewise continuous functions that is quadratically convergent to a solution of the boundary value problem (1) - (3).

Theorem 1: Suppose conditions (A) hold.

Then there exists a sequence $\{u_n\}_{n=0}^{\infty}$ of functions $u_n \in PC^1([0,T], \mathbf{R})$, n=1,2,..., such that $u_0(t) \le u_1(t) \le ... \le u_n(t) \le ...$, which is quadratically convergent to a solution u of the boundary problem (1) - (3).

Proof: Set $u_0 = \alpha$. By Lemma 2 we have that there exists a solution $u_1 \in S[\alpha, \beta]$ of the boundary value problem (10), (11), (3).

Suppose that we have defined the functions $u_0, u_1, ..., u_{n-1} \in PC^1([0,T], \mathbf{R})$ such that $u_j \in S[u_j, \beta]$, j=1,...,n-1 and

$$u_0(t) \le u_1(t) \le ... \le u_{n-1}(t), t \in [0,T]$$

where the function u_i , j=1,...,n-1 is a solution of the boundary value problem

(19)
$$x' = g(t, x, u_{j-1}(t)), t \in [0,T], t \neq t_k, k=1,...,p,$$

(20)
$$\Delta x\Big|_{t=t_k} = h_k(x(t_k), u_{j-1}(t_k)), k=1,...,p$$

(21) Mx(0)+Nx(T)=c

From the definitions of the functions g, h and u_{n-1} and inequality (6) it follows that for $t \in [0,T]$, $t \neq t_k$, k=1,...,p we have the following inequality

$$g(t,u_{n-1}(t),u_{n-1}(t)) = f(t,u_{n-1}(t)) \ge f(i,u_{n-2}(t)) + f'_x(t,u_{n-2}(t))[u_{n-1}(t)-u_{n-2}(t)] - K[u_{n-1}(t)-u_{n-2}(t)]^2 = g(t,u_{n-1}(t),u_{n-2}(t)) = u'_{n-1}(t)$$

i.e.

(22)
$$u'_{n-1}(t) \le g(t, u_{n-1}(t), u_{n-1}(t)), t \in [0,T], \text{ for } t \ne t_k, k=1,...,p.$$

From the definitions of the functions h_k and u_{n-1} and inequality (7) it follows that for k=1,...,p we have the following inequalities

$$h_k(u_{n-I}(t_k),u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) \geq I_k(u_{n-2}(t_k)) + \ I'_k \ (u_{n-2}(t_k))[u_{n-I}(t_k)-u_{n-2}(t_k)] - I_k(u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) + I'_k \ (u_{n-I}(t_k)-u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) + I'_k \ (u_{n-I}(t_k)-u_{n-I}(t_k)) = I_k(u_{n-I}(t_k)) =$$

$$-T_k[u_{n-1}(t_k)-u_{n-2}(t_k)]^2=h_k(u_{n-1}(t_k),u_{n-2}(t_k))=\Delta u_{n-1}\Big|_{t=t_k},$$

i.e.

(23)
$$\Delta u_{n-1}\Big|_{t=t_k} \leq h_k(u_{n-1}(t_k), u_{n-1}(t_k)), k=1,...,p$$
.

By (22) and (23) we have that the function u_{n-1} is a lower solution of the boundary problem (19) - (21) for j=n.

Furthermore from inequalities (4)-(7) we obtain

$$\beta'(t) \ge f(t,\beta(t)) \ge g(t,\beta(t),u_{n-l}(t)), \ t \in [0,T], \ t \ne t_k, \ k=1,...,p,$$

$$\Delta \beta\Big|_{t=t_k} \ge I_k(\beta(t_k)) \ge h_k(\beta(t_k),u_{n-l}(t_k)), \ k=1,...,p$$

which shows that the function β is an upper solution of the boundary value problem (17)-(19) for j=n.

By Lemma 2 there exists a solution $u_n \in S[u_{n-1}, \beta]$ of the boundary value problem (19)-(21) for j=n. Furthermore, u_n is a fixed point of the operator F, defined on $S[u_{n-1}, \beta]$ by

Fx(t)=CAexp[-(L+2KP)t]+

$$+ \int_{0}^{T} \mathsf{G}(t,s) q_{n}(s,x(s)) ds + \sum_{k=1}^{p} \mathsf{G}(t,t_{k}) h_{k}(x(t_{k}),u_{n-1}(t_{k}))$$

where the number A is determined from (17), the function G is defined by (18), and $q_n(t,x)=g(t,x,u_{n-1}(t))+(L+2KP)x$ for $(t,x)\in\Omega[u_{n-1},\beta]$.

This means that for $t \in [0,T]$ we have

(24)
$$u_n(t) = \operatorname{Fu}_n(t) = \operatorname{CA} \exp[-(L+2\operatorname{KP})t] + \int_0^T \mathsf{G}(t,s)q_n(t,u_n(s))ds +$$

$$+\sum_{k=0}^{p} G(t,t_k) h_k(u_n(t_k),u_{n-1}(t_k))$$

Thus we have constructed a sequence $\{u_n\}_{n=0}^{\infty}$ of functions $u_n \in PC^1([0,T],\mathbf{R})$ such that $u_n \in S[u_{n-1},\beta], n=1,2,...$, for which

$$u_0(t) \le u_1(t) \le \ldots \le u_n(t) \le \ldots, t \in [0,T].$$

Clearly there exists a function $u \in PC^1([0,T],\mathbf{R})$ such that

$$\lim_{n} u_n(t) = u(t), t \in [0,T]$$

From (24) it follows that the sequence $\{u_n\}_{n=0}^{\infty}$ is uniformly convergent to the function u on every finite closed interval, which does not contain t_k , k=1,...,p, and that

$$\lim_{n \to \infty} q_n(t, u_n(t)) = g(t, u(t), u(t)) + (L + 2KP)u(t) = f(t, u(t)) + (L + 2KP)u(t), t \in [0, T].$$

Therefore the function u=u(t) is a solution of the boundary value problem

$$x' + (L+2KP)x = f(t,u(t)) + (L+2KP)u(t), t \in [0,T], t \neq t_k, k=1,...,p,$$

$$\Delta x\Big|_{t=t_k} = I_k(x(t_k)), k=1,\ldots,p$$

Mx(0)+Nx(t)=C

and that means that u=u(t) is a solution of the boundary value problem (1)-(3).

Finally we show that the sequence $\{u_n\}_{n=1}^{\infty}$ is quadratically convergent to the function u.

Consider the function $F:\Omega[\alpha,\beta]\to \mathbf{R}$, defined by

$$F(t,x)=f(t,x)+Kx^2, (t,x)\in\Omega[\alpha,\beta].$$

From condition **A2** and inequality (6) it follows that there exists a constant Q>0 such that (25) $0 \le F_{xx}''(t,x) \le Q$ for $(t,x) \in \Omega[\alpha,\beta]$

Let $z_n(t)=u(t)-u_n(t)$, $t \in [0,T]$, n=1,2,... Using the fact that u=u(t) is a solution of the boundary value problem (1)-(3), and $u_n=u_n(t)$ is a solution of the boundary value problem (19)-(21) for j=n, we obtain

(26)
$$z'_{n}(t) = f(t,u(t)) - g(t,u_{n}(t),u_{n-1}(t)) =$$

 $= f(t,u(t)) - f(t,u_{n-1}(t)) - F'_{x}(t,u_{n-1}(t)) [u_{n}(t) - u_{n-1}(t)] +$
 $+ K[u_{n}^{2}(t) - u_{n-1}^{2}(t)], t \in [0,T], t \neq t_{k}, k = 1,...,p$

Using (25) and (26), the Mean Value Theorem and the definition of the function F, we obtain that there exist functions ξ and η , $u_{n-1}(t) \le \xi(t) \le u(t)$, $u_{n-1}(t) \le \eta(t) \le \xi(t)$, $t \in [0,T]$ such that

(27)
$$z'_{n}(t) = f'_{x}(t,\xi(t))[u(t)-u_{n-1}(t)] - F'_{x}(t,u_{n-1}(t))[u_{n}(t)-u_{n-1}(t)] + K[u^{2}_{n}(t)-u^{2}_{n-1}(t)] \le [F'_{x}(t,\xi(t)) - F'_{x}(t,u_{n-1}(t)) + K(u(t)-u_{n-1}(t))](u(t)-u_{n-1}(t)) + [F'_{x}(t,u_{n-1}(t)) - K(u(t)+u_{n}(t))](u(t)-u_{n}(t)) = F''_{xx}(t,\eta(t))(\xi(t)-u_{n-1}(t))(u(t)-u_{n-1}(t)) + \psi_{n}(t)(u(t)-u_{n}(t)) + K(u(t)-u_{n-1}(t))^{2} \le (Q+K) z^{2}_{n-1}(t) + \psi_{n}(t)z_{n}(t), t \in [0,T], t \neq t_{k}, k=1,...,p$$
where $\psi_{n}(t) = F'_{x}(t,u_{n-1}(t)) - K(u(t)+u_{n}(t))$.

Consider the functions G_k :[$\alpha(t_k), \beta(t_k)$] \rightarrow **R**, k=1,...,p, defined by $G_k(x)=I_k(x)+T_kx^2, x\in[\alpha(t_k),\beta(t_k)]$.

From condition A3 and inequalities (7) it follows that there exist constants $Q_k>0$ such that

(28) $0 \le G_k''(x) \le Q_k \text{ for } x \in [\alpha(t_k), \beta(t_k)]$.

Again we use that u=u(t) is a solution of the boundary value problem (1)-(3) and $u_n=u_n(t)$ is a solution of the boundary value problem (19)-(21) for j=n and we obtain

(29)
$$\Delta z_n \Big|_{t=t_k} = I_k(u(t_k)) - h_k(u_n(t_k), u_{n-1}(t_k)) =$$

$$= I_k(u(t_k)) - I_k(u_{n-1}(t_k)) - G'_k(u_{n-1}(t_k)) [u_n(t_k) - u_{n-1}(t_k)] +$$

$$+ T_k [u_n^2(t_k) - u_{n-1}^2(t_k)]$$

Using (28) and (29), the Mean Value Theorem and the definitions of the functions G_k , we obtain that there exists constants $\xi_k \in [u_{n-1}(t_k), u(t_k)]$ and $\eta_k \in [u_{n-1}(t_k), \xi_k]$, such that

$$(30) \quad \Delta z_{n}\Big|_{t=t_{k}} = I'_{k} (\xi_{k})[u(t_{k})-u_{n-1}(t_{k})] - G'_{k} (u_{n-1}(t_{k}))[u_{n}(t_{k})-u_{n-1}(t_{k})] + \\ + T_{k}[u_{n}^{2}(t_{k})-u_{n-1}^{2}(t_{k})] \leq \\ \leq [G'_{k} (\xi_{k})-G'_{k} (u_{n-1}(t_{k}))+T_{k}(u(t_{k})-u_{n-1}(t_{k}))](u(t_{k})-u_{n-1}(t_{k}))+ \\ + [G'_{k} (u_{n-1}(t_{k}))-T_{k}(u(t_{k})-u_{n}(t_{k}))](u(t_{k})-u_{n}(t_{k})) = \\ = G''_{k} (\eta_{k})(\xi_{k}-u_{n-1}(t_{k}))(u(t_{k})-u_{n-1}(t_{k}))+b_{k}^{(n)} (u(t_{k})-u_{n}(t_{k}))+T_{k}(u(t_{k})-u_{n-1}(t_{k}))^{2} \leq \\ \leq (Q_{k}+T_{k}) z_{n}^{2}(t_{k})+b_{k}^{(n)} z_{n}(t_{k}),$$

where $b_k^{(n)} = G'_k(u_{n-1}(t_k)) - T_k(u(t_k) - u_n(t_k))$.

By (27) and (30) the functions z_n satisfy the impulsive differential inequalities

(31)
$$z'_n(t) \le \psi_n(t) z_n(t) + (Q+K) z_n^2(t), t \in [0,T], t \ne t_k, k=1,...,p$$

(32)
$$\Delta z_n \Big|_{t=t_k} \le b_k^{(n)} z_n(t_k) + (Q_k + T_k) z_n^2(t_k), k=1,...,p$$

(33) $Mz_n(0)+Nz_n(T)=C$

By Lemma 1 we have

(34)
$$z_n(t) \le z_n(0) \prod_{0 \le t_k < t} (1 + b_k^{(n)}) \sigma(t) + \int_0^t \prod_{s < t_k < t} (1 + b_k^{(n)}) \sigma(t) \sigma^{-1}(s) (Q + K) z_n^2(s) ds + \sum_{0 \le t_k \le t} \prod_{t_k \le t_k \le t} (1 + b_j^{(n)}) \sigma(t) \sigma^{-1}(t_k) (Q_k + T_k) z_n^2(t_k), t \in [0, T]$$

where
$$\sigma(t) = exp \left(\int_{0}^{t} \psi_{n}(s) ds \right)$$
.

By the boundary condition (33) and inequality (34) it follows that for $t \in [0,T]$ the following inequality holds:

(35)
$$z_0 = z_n(0)$$

$$\leq \left[\frac{M}{N} + \prod_{k=1}^{p} (1 + b_k^{(n)}) \sigma(\mathsf{T}) \right]^{-1} \left\{ \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) (\mathsf{Q} + \mathsf{K}) z_n^2(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(s) ds + \frac{1}{2} \int_{0}^{T} \prod_{s < t < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma(\mathsf{T})$$

$$+ \sum_{k=1}^{p} \prod_{t_k < t_j < T} (1 + b_j^{(n)}) \sigma(\mathsf{T}) \sigma^{-1}(t_k) (Q_k + T_k) z_n^2(t_k) \bigg\}$$

From inequalities (34) and (35) it follows that there exists a constant $\lambda > 0$ such that $\sup\{|z_n(t)|:t\in[0,T]\} \le \lambda \sup\{|z_{n-1}(t)|:t\in[0,T]\}^2$,

which means that

$$||u-u_n|| \le \lambda ||u-u_{n-1}||^2$$
.

This concludes the proof of Theorem 1.

Remark: In the case when the boundary value problem (1)-(3) is without impulses, i.e. $I_k(x) = 0$, k=1,...,p and M=-N=1, C=0 (i.e. we have a periodic problem for ordinary differential equations), the results in this paper are identical with the results in [2].

Consider the impulsive differential equation (1), (2) with periodic boundary condition (36) x(0)=x(T)

Then we have the following corollary of Theorem 1:

Theorem 2: Suppose conditions **A1-A3**, and **A5** hold. Then there exists a monotone increasing sequence $\{u_n\}_{n=0}^{\infty}$ of functions $u_n \in PC^1([0,T],\mathbf{R})$, which is quadratically convergent to a solution u of the periodic problem (1), (2), (36).

Partyally supported by the Fund NIMP of Plovdiv University under contract PU-7-MM.

REFERENCES:

- [1] D. D. Bainov, P. S. Simeonov, *Integral inequalities and applications*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992.
- [2] Lakshmikantham V., Nieto J.J., Generalized quasilinearization for nonlinear first order ordinary differential equation, Nonlinear Times and Digest, 2 (1995), 1-10.