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QUASILINEARIZATION OF A BOUNDARY VALUE PROBLEM 
FOR IMPULSIVE DIFFERENTIAL EQUATIONS 
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 In this paper we study the existence and approximation of solution for nonlinear 

impulsive differential equations with fixed moments of impulsive perturbations. Using 
quasilinearization technique we obtain a monotone sequence of approximate solutions that 
converges quadratically to a solution. 
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Consider the impulsive differential equation 
(1)     pktttxtfx k ,,1,,),,( …=≠∈=′ T][0,   

(2)     pktxIx kktt k
.,1)),(( …==∆ =    

with boundary condition 
(3)     CTNM =+ )()0( xx                                 

where x∈R, f:[0,T]×R→R, Ik:R→R, k=1,…,p, M, N, and C are real constants, and { }p

kkt 1=  are 

fixed points, such that 0<t1<t2<…<tp<T and )()( −+
= −=∆ kktt txtxx

k
. 

Let PC([0,T],R) denote the set of all functions u:[0,T]→R that are piecewise continuous, 
with points of discontinuity of the first kind tk, k=1,…,p, at which they are continuous from the 
left. 

Let PC1([0,T],R) denote the set of all functions u∈PC([0,T],R), that are continuously 
differentiable at all t∈[0,T], t≠tk,k=1,…,p, and for which the limits 

pktutu
ktt

k ,,1),(lim)0( …=′=−′
−→

 exist. 

Definition 1:  The function α∈PC1([0,T],R) (β∈PC1([0,T],R) is called lower (upper) 
solution of the boundary value problem (1) - (3), if the following inequalities hold 

(4)     α′(t)≤f(t,α(t)) (β′(t)≥f(t,β(t))    for t∈[0,T], t≠tk, k=1,…,p,   

(5)     ))(()()( kkkktt tItt
k

αααα ≤−=∆ −+
=                                         

          ( ) pktItt kkkktt k
,,1,))(()()( …=≥−=∆ −+

= ββββ  

and the boundary condition 
Mα(0)+Nα(T)=C  (Mβ(0)+Nβ(T)=C) 
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also holds. 
Usually, the lower and upper solutions are ordered and either α(t)≤β(t) or α(t)≥β(t), 

t∈[0,T]. 

Definition 2:  The sequence { }∞
=0nnu  of functions un:[0,T]→R (un∈C[0,T]) is called 

quadratically convergent to the function u:[0,T]→R, (u∈C[0,T]), if there exists a constant 
λ>0, such that  

,...,2,1,
2

1 =−≤− − nuuuu nn λ  

where )(sup
],0[

tuu
Tt∈

= . 

 
Let the functions α,β∈PC1([0,T],R) are such that α(t)≤β(t) for t∈[0,T].  Define the sets 
S[α,β]={ u∈PC1([0,T],R):α(t)≤u(t)≤β(t) for t∈[0,T]}, 
Ω[α,β]={( t,x)∈R2:t∈[0,T], α(t)≤x≤β(t)}. 
We say that the conditions (A) hold, if the following conditions are fulfilled: 
A1.  The functions α,β∈PC1([0,T],R) are lower and upper solutions respectively of the 

boundary value problem (1)-(3), such that α(t)≤β(t) for t∈[0,T]. 
A2.  The function f:Ω[α,β]→R is twice continuously differentiable with respect to its 

second argument on Ω[α,β]. 
A3.  The functions Ik:[α(tk),β(tk)]→R, k=1,…,p are twice continuously differentiable in 

[α(tk),β(tk)]. 
A4.  The constants M and N are such that 

MN<0 and )exp(LT
M
N

≤ ,  

where [ ]{ }βα ,),(:),(sup Ω∈′= xtxtf xL . 

A5.  The following inequality holds: 

0))(,(
0

<≤′∫ δ
T

x dttxtf  for x∈S[α,β]. 

A6. K2),( −≥′′ xtf xx , K>0 for (t,x)∈Ω[α,β]                                     (6) 

A7. kk TxI 2)( −≥′′ , Tk>0 for x∈[α(tk),β(tk)], k=1,…,p .                     (7) 

 
Define the set 

W={( t,x,y)∈R3:t∈[0,T], α(t)≤y≤x≤β(t)} 
and consider the function g:W→R defined by 

2)())(,(),(),,( yxyxytfytfyxtg x −−−′+= K  for (t,x,y)∈W. 

Clearly f(t,x)=g(t,x,x) for (t,x)∈Ω[α,β] . 
Let  t∈[0,T] and x,y,z∈R are such that α(t)≤z≤x≤y≤β(t).  Then 

(8)    g(t,y,z)-g(t,x,z)= ′fx (t,z)(y-x)-K(y+x-2z)(y-x)≥-(L+2KP)(y-x)    

where P=sup{β(t)-α(t): t∈[0,T]} . 
 

Define the sets 
Wk={( t,x,y)∈R2:α(tk)≤y≤x≤β(tk)}, k=1,…,p 
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and consider the functions hk:Wk→R, k=1,…,p defined by 
hk(x,y)=Ik(y)+ ))(( yxyIk −′ -Tk(x-y)2, (x,y)∈Wk . 

Clearly Ik(x)=hk(x,x) for x∈[α(tk),β(tk)] .  Furthermore, if α(tk)≤z≤x≤y≤β(tk) then 

(9)    hk(y,z)- hk(x,z)= ))(( xyzIk −′ -Tk(y+x-2z)(y-x)≥-(Sk+2TkP)(y-x) 

where Sk=sup{ |Ik(x)|:x∈[α(tk),β(tk)]}, k=1,…,p . 
 

We will use the following lemma: 
 

Lemma 1:  (Theorem 16.2, [1].)  Assume that for t≥t0 the following inequality holds: 

u(t)≤a(t)+ ∑∫
<<

+
ttt

kk

t

t k

tudssusb
00

)()()( β , 

where u,a,b∈PC(R+,R+), βk≥0, k=1,2,…, and 0<t0<t1<…<tk<… are fixed numbers. 
Then for t≥t0 the following inequality holds: 

u(t)≤a(t)+ ∫ ∏ ∫
<<











+

t

t tts

t

t
k

k k

dsdbsbsa
0

)(exp)1()()( ττβ +    

+ ∑ ∏ ∫
<< <<











+

ttt ttt

t

t
jkk

k jk k

dbta
0

)(exp)1()( ττββ  

 
Consider the impulsive differential equation 

(10)  �x =g(t,x,α(t)), t∈[0,T], t≠tk, k=1,…,p                                  

(11)   =∆ = kttx hk(x(tk),α(tk)), k=1,…,p                                             

We are going to prove the following lemma for existence of a solution of the boundary 
value problem (10), (11), (3). 

 
Lemma 2:  Suppose that conditions A1-A4, A6, and A7 hold.  Then the boundary value 

problem (10), (11), (3) has a solution x∈S[α,β] . 
Proof:  From the definition of the function g and inequalities (4) and (6) it follows that for 

t∈[0,T], t≠tk, k=1,…,p we have the inequalities 

(12)    α′(t)≤f(t,α(t))=g(t,α(t),α(t))                                                

and 
β′(t)≥f(t,β(t))= f(t,α(t))+ xf ′ (t,β(t))[β(t)-α(t)]+ 

+ xxf ′′
2

1
(t,ξ(t))[β(t)-α(t)]2≥g(t,β(t),α(t)),  

where α(t)≤ξ(t)≤β(t), t∈[0,T]. 

From the definition of the functions hk and inequalities (5) and (7) it follows that for 
k=1,..,p we have the inequalities 

(14)    
ktt=∆α ≤ Ik(α(tk))=hk(α(tk),α(tk))                                      

and 
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(15)   
ktt=∆β ≥ Ik(β(tk))=Ik(α(tk))+ ))(( kk tI α′ [β(tk)-α(tk)]+ 

+ )(
2

1
kkI ξ′′ [β(tk)-α(tk)]

2≥hk(β(tk),α(tk))                                      

where ξk∈(α(tk),β(tk)). 

From (12) -(15) it follows that the functions α and β are lower and upper solutions 
respectively of the boundary value problem (10), (11), (3). 

 
Define the operator F on S[α,β] by the equality 

(16)   Fx(t)=CAexp[-(L+2KP)t]+ ∫
T

dssxtqstG
0

))(,(),( + 

+∑
=

p

k
kkkk ttxhttG

1

))(),((),( α                                                          

for x∈S[α,β] and t∈[0,T], where 

(17)   A=[M+Nexp(-(L+2KP)T)]-1,                                                   

  q(t,u)=g(t,u,α(t))+(L+2KP)u, (t,u)∈Ω[α,β] 

(18)   




≤≤≤−+−−

≤<≤−+−
=

TststKPLAM

TtsstKPLAM
stG

0)],)(2(exp[)1(

0)],)(2(exp[
),(           

 
Clearly if x∈S[α,β] and x(t)=Fx(t) for t∈[0,T] (i.e. x is a fixed point for the operator F), 

then x=x(t) is a solution of the boundary value problem (10), (11), (3). 
 

We are going to show that G(t,s)≥0 for t,s∈[0,T] . 
 

Indeed, from (17) it follows that 

A=[M(1-
M
N

exp(-(L+2KP)T))]-1, or AM[1-
M
N

exp(-(L+2KP)T)]=1 

By A4 we have that 

M
N

exp(-(L+2KP)T)≤1 

Therefore AM>0 and AM-1=-ANexp(-(L+2KP)T)≥0, and from these inequalities, using 
(18), we have that G(t,s)≥0 for t,s∈[0,T]. From inequality G(t,s)≥0 and the inequality (8) and 
(9) it follows that the operator F is monotone non-decreasing, i.e. for  x,y∈S[α,β] and x(t)≤y(t) 
for t∈[0,T]we have Fx(t)≤Fy(t) for t∈[0,T] . 

Therefore F:S[α,β]→S[α,β], and by Shauder's Theorem there exists a function x∈S[α,β] 
such that x=Fx .  As we noted before this means that x=x(t) is a solution to the boundary value 
problem (10), (11), (3).   

This complites the proof of Lemma 2.� 
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We are going to justify a method for constructing a monotone sequence of piecewise 
continuous functions that is quadratically convergent to a solution of the boundary value 
problem (1) - (3). 

 
Theorem 1:  Suppose conditions (A) hold. 

Then there exists a sequence { }∞
=0nnu  of functions un∈PC1([0,T],R), n=1,2,…, such that 

u0(t)≤u1(t)≤…≤un(t)≤…, which is quadratically convergent to a solution u of the boundary 
problem (1) - (3). 

 
Proof:  Set u0=α .  By Lemma 2 we have that there exists a solution u1∈S[α,β] of the 

boundary value problem (10), (11), (3). 
Suppose that we have defined the functions u0,u1,…,un-1∈PC1([0,T],R) such that uj∈S[uj-

1,β], j=1,…,n-1 and  
u0(t)≤u1(t)≤…≤un-1(t), t∈[0,T] 

where the function uj, j=1,…,n-1 is a solution of the boundary value problem 
(19)  x′ =g(t,x,uj-1(t)), t∈[0,T], t≠tk, k=1,…,p,                                                           

(20)   =∆ = kttx hk(x(tk),uj-1(tk)), k=1,…,p                                                                      

(21)    Mx(0)+Nx(T)=c                                                                                                   
From the definitions of the functions g, h and un-1 and inequality (6) it follows that for 

t∈[0,T], t≠tk, k=1,…,p we have the following inequality 
g(t,un-1(t),un-1(t))=f(t,un-1(t))≥f(i,un-2(t))+ xf ′ (t,un-2(t))[un-1(t)-un-2(t)]- 

-K[un-1(t)-un-2(t)]
2=g(t,un-1(t),un-2(t))= )(1 tun−′  

i.e.  
(22)   )(1 tun−′ ≤g(t,un-1(t),un-1(t)), t∈[0,T], for t≠tk, k=1,…,p.                                           

From the definitions of the functions hk and un-1 and inequality (7) it follows that for 
k=1,…,p we have the following inequalities 

hk(un-1(tk),un-1(tk))=Ik(un-1(tk))≥Ik(un-2(tk))+ kI ′ (un-2(tk))[un-1(tk)-un-2(tk)]- 

-Tk[un-1(tk)-un-2(tk)]
2=hk(un-1(tk),un-2(tk))=

kttnu =−∆ 1 , 

i.e.  

(23)   
kttnu =−∆ 1 ≤hk(un-1(tk),un-1(tk)), k=1,…,p .                                                        

 
By (22) and (23) we have that the function un-1 is a lower solution of the boundary problem 

(19) - (21) for j=n . 
 

Furthermore from inequalities (4)-(7) we obtain 

β′(t)≥f(t,β(t))≥g(t,β(t),un-1(t)), t∈[0,T], t≠tk, k=1,…,p, 

ktt=∆β ≥Ik(β(tk))≥hk(β(tk),un-1(tk)), k=1,…,p 

which shows that the function β is an upper solution of the boundary value problem (17)-(19) 
for j=n . 
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By Lemma 2 there exists a solution un∈S[un-1,β] of the boundary value problem (19)-(21) 
for j=n .  Furthermore, un is a fixed point of the operator F, defined on S[un-1,β] by 

Fx(t)=CAexp[-(L+2KP)t]+  

+ ∫
T

n dssxsqst
0

))(,(),(G +∑
=

−

p

k
knkkk tutxhtt

1
1 ))(),((),(G  

where the number A is determined from(17), the function G is defined by (18), and 
qn(t,x)=g(t,x,un-1(t))+(L+2KP)x for (t,x)∈Ω[un-1,β] . 
This means that for t∈[0,T] we have  

(24)   un(t)=Fun(t)=CAexp[-(L+2KP)t]+ ∫
T

nn dssutqst
0

))(,(),(G +  

  +∑
=

−

p

k
knknkk tutuhtt

0
1 ))(),((),(G                                                                        

Thus we have constructed a sequence { }∞
=0nnu  of functions un∈PC1([0,T],R) such that 

un∈S[un-1,β], n=1,2,…, for which  

u0(t)≤u1(t)≤…≤un(t)≤…., t∈[0,T]. 

Clearly there exists a function u∈PC1([0,T],R) such that  
)()(lim tutun

n
=

∞→
, t∈[0,T] 

From (24) it follows that the sequence { }∞
=0nnu  is uniformly convergent to the function u on 

every finite closed interval, which does not contain tk, k=1,…,p , and that  
))(,(lim tutq nn

n→∞
=g(t,u(t),u(t))+(L+2KP)u(t)=f(t,u(t))+(L+2KP)u(t), t∈[0,T]. 

Therefore the function u=u(t) is a solution of the boundary value problem 
x′ +(L+2KP)x=f(t,u(t))+(L+2KP)u(t), t∈[0,T], t≠tk, k=1,…,p, 

=∆ = kttx Ik(x(tk)), k=1,…,p  

Mx(0)+Nx(t)=C 
and that means that u=u(t) is a solution of the boundary value problem (1)-(3). 

Finally we show that the sequence { }∞=1nnu  is quadratically convergent to the function u. 

Consider the function F:Ω[α,β]→R, defined by 
F(t,x)=f(t,x)+Kx2, (t,x)∈Ω[α,β]. 

From condition A2 and inequality (6) it follows that there exists a constant Q>0 such that 
(25)   0≤ xxF ′′ (t,x)≤Q for (t,x)∈ Ω[α,β]                                                                         

Let zn(t)=u(t)-un(t), t∈[0,T], n=1,2,… .  Using the fact that u=u(t) is a solution of the 
boundary value problem (1)-(3), and un=un(t) is a solution of the boundary value problem (19)-
(21) for j=n, we obtain 

(26)  nz′ (t)=f(t,u(t))-g(t,un(t),un-1(t))=  

          =f(t,u(t))-f(t,un-1(t))- xF ′ (t,un-1(t))[un(t)-un-1(t)]+  

  +K[ )()( 2
1

2 tutu nn −− ], t∈[0,T], t≠tk, k=1,…,p                                                          

Using (25) and (26), the Mean Value Theorem and the definition of the function F, we 
obtain that there exist functions  ξ and η, un-1(t)≤ξ(t)≤u(t),  un-1(t)≤η(t)≤ξ(t), t∈[0,T] such that 



184 

(27)  nz′ (t)= xf ′ (t,ξ(t))[u(t)-un-1(t)]- xF ′ (t,un-1(t))[un(t)-un-1(t)]+ 

+K[ )()( 2
1

2 tutu nn −− ]≤[ xF ′ (t,ξ(t))- xF ′ (t,un-1(t))+K(u(t)-un-1(t))](u(t)- 

-un-1(t))+[ xF ′ (t,un-1(t))-K(u(t)+un(t))](u(t)-un(t))= 

= xxF ′′ (t,η(t))(ξ(t)-un-1(t))(u(t)-un-1(t))+ψn(t)(u(t)-un(t))+K(u(t)-un-1(t))
2≤ 

≤(Q+K) 2
1−nz (t)+ψn(t)zn(t), t∈[0,T], t≠tk, k=1,…,p                                              

where ψn(t)= xF ′ (t,un-1(t))-K(u(t)+un(t)) . 

 
Consider the functions Gk:[α(tk),β(tk)]→R, k=1,…,p, defined by 

Gk(x)=Ik(x)+Tkx
2, x∈[α(tk),β(tk)]. 

From condition A3 and inequalities (7) it follows that there exist constants Qk>0 such that  

(28)  0≤ kG ′′ (x)≤Qk for x∈[α(tk),β(tk)] .                                                                              

 
Again we use that u=u(t) is a solution of the boundary value problem (1)-(3) and un=un(t) is 

a solution of the boundary value problem (19)-(21) for j=n and we obtain 

(29)  =∆ = kttnz Ik(u(tk))-hk(un(tk),un-1(tk))=  

=Ik(u(tk))-Ik(un-1(tk))- kG′ (un-1(tk))[un(tk)-un-1(tk)]+ 

+Tk[ )()( 2
1

2
knkn tutu −− ]                                                                                                

Using (28) and (29), the Mean Value Theorem and the definitions of the functions Gk, we 
obtain that there exists constants ξk∈[un-1(tk),u(tk)] and ηk∈[un-1(tk),ξk], such that  

(30)  =∆ = kttnz kI ′ (ξk)[u(tk)-un-1(tk)]- kG′ (un-1(tk))[un(tk)-un-1(tk)] +  

+Tk[ )()( 2
1

2
knkn tutu −− ]≤ 

≤[ kG′ (ξk)- kG′ (un-1(tk))+Tk(u(tk)-un-1(tk))](u(tk)-un-1(tk))+ 

+[ kG′ (un-1(tk))-Tk(u(tk)-un(tk))](u(tk)-un(tk))= 

= kG ′′ (ηk)(ξk-un-1(tk))(u(tk)-un-1(tk))+
)(n

kb (u(tk)-un(tk))+Tk(u(tk)-un-1(tk))
2≤ 

≤(Qk+Tk)
2
nz (tk)+

)(n
kb zn(tk),                                                                                         

where )(n
kb = kG′ (un-1(tk))-Tk(u(tk)-un(tk)) . 

By (27) and (30) the functions zn satisfy the impulsive differential inequalities 

(31)  nz′ (t)≤ψn(t)zn(t)+(Q+K) 2
nz (t), t∈[0,T], t≠tk, k=1,…,p                                           

(32)  
kttnz =∆ ≤ )(n

kb zn(tk)+(Qk+Tk)
2
nz (tk), k=1,…,p                                                           

(33)   Mzn(0)+Nzn(T)=C                                                                                                    
  

By Lemma 1 we have  

(34)  zn(t)≤zn(0) ∏
<≤

+
tt

n
k

k

b
0

)( )1( σ(t)+ ∫ ∏
<<

+
t

tts

n
k

k

b
0

)( )1( σ(t)σ-1(s)(Q+K) 2
nz (s)ds+ 

+ ∑ ∏
<< <<

− ++
tt ttt

knkkk
n

j
k jk

tzTQttb
0

21)( )())(()()1( σσ , t∈[0,T]                                        
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where σ(t)=exp 







∫
t

n dss
0

)(ψ  . 

By the boundary condition (33) and inequality (34) it follows that for t∈[0,T] the following 
inequality holds: 
(35)   z0=zn(0) 

≤




++







++ ∫ ∏∏

<<

−
−

=

T

Tts
n

n
j

p

k

n
k dsszsbb

N

M

0

21)(
1

1

)( )())(()()1()()1( KQTT σσσ + 

+






++∑ ∏
= <<

−
p

k Ttt
knkkk

n
j

jk

tzTQtb
1

21)( )())(()()1( σσ T                                                       

From inequalities (34) and (35) it follows that there exists a constant λ>0 such that 
sup{ |zn(t)|:t∈[0,T]} ≤λsup{ |zn-1(t)|:t∈[0,T]} 2, 

which means that 
||u-un||≤λ||u-un-1||

2. 

This concludes the proof of Theorem 1. � 

 
Remark:  In the case when the boundary value problem (1)-(3) is without impulses, i.e. 

Ik(x)≡0, k=1,…,p and M=-N=1, C=0 (i.e. we have a periodic problem for ordinary differential 
equations), the results in this paper are identical with the results in [2]. 

 
Consider the impulsive differential equation (1), (2) with periodic boundary condition 

(36)  x(0)=x(T)                                                                                                                 
Then we have the following corollary of Theorem 1: 

 
Theorem 2:  Suppose conditions A1-A3, and A5 hold.  Then there exists a monotone 

increasing sequence { }∞
=0nnu  of functions un∈PC1([0,T],R), which is quadratically convergent 

to a solution u of the periodic problem (1), (2), (36). 
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