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QUASILINEARIZATION OF A BOUNDARY VALUE PROBLEM
FOR IMPULSIVE DIFFERENTIAL EQUATIONS

S. G. Hrigtova', G. K. Kulev’

In this paper we study the existence and apprdiomaof solution for nonlinear
impulsive differential equations with fixed moment$ impulsive perturbations. Using
quasilinearization technique we obtain a monotamuence of approximate solutions that
converges quadratically to a solution.
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Consider the impulsive differential equation
(1) X=f@x)tel0,TIt=t k=1...,p
2 M, =L Xt k=1....p
with boundary condition
(3) Mx@+Nx(T)=C
wherexeR, [0, T]xR—>R, IkR—R, k=1,...p, M, N, and C are real constants, ajtd’, are
fixed points, such thatd<t,<...<t,<T and A><| ot = X(t) = x(t,) -

Let PC([0,T]R) denote the set of all functiond0,T]—»>R that are piecewise continuous,

with points of discontinuity of the first kingj, k=1,...p, at which they are continuous from the
left.

Let PC([0,T],R) denote the set of all functions PC([0,T]R), that are continuously
differentiable at alte[0,T], t=t,,k=1,...p, and for which the limits
u'(t, —0) = !lntw u'(t),k=1...,p exist.

Definition 1: The function acPCY[0,T],R) (8cPC([0,T],R) iscalled lower (upper)
solution of the boundary value problem (1) - (3),if the following inequalities hold

4)  a)=ftaft) (BO)(L,HE) for te[0,T], t£ty, k=1,...p,
(6) Adf., =alt)-alt) <1 (a()
(8]0, = BE) - A 2 1 (BENk=L....p

and the boundary condition
Ma(OHNaA(T)=C (MBO+NA(T)=C)
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also holds.

Usually, the lower and upper solutions are ordered either(t)<A(t) or o(t)>4(1),
te[0,T].

Definition 2: The sequence {u, |7, of functions uy:[0,T]-R (u,eC[0,T]) is called

quadratically convergent to the function u:[0, T]>R, (ueC[0,T]), if there exists a constant
A>0, such that

Jlu, = < Auy —ul*n=12....,

where |Ju = sup|u(t)|.

te[0,T]

Let the functionsz, S PC([0,T],R) are such that(t)</(t) for te[0,T]. Define the sets

Sla,Al={uePCY([0,T],R):a(t)<u(t)</(t) for t[0,T]},

QlaA={(t,X) eR%te[0,T], a(t)<x<A(t)}-

We say that the conditions (A) hold, if the follogiconditions are fulfilled:

Al. The functionsy,BePCY([0,T],R) are lower and upper solutions respectively of the
boundary value problem (1)-(3), such thé)<p(t) for te[0,T].

A2. The functiorf:Q[a,f]—>R is twice continuously differentiable with respéeits
second argument dR[ ¢, 4.

A3. The functions,:[ a(ty),At)] >R, k=1,... p are twice continuously differentiable in
[a(t). Atd]-

A4. The constants M and N are such that

MN<O0 and % <explT),

wherel = supﬂ fo(t,%)| 1 (t, %) e Qla, B}
AS5. The following inequality holds:

;
[ fit.x(t)dt <5 <0 for xeS[a.fl.
0

AB. f(t,x)>-2K, K>0 for t,x)eQ[a.f] (6)
A7. 17(x) 2 -2T,, T,>0 for xe[ o), A(t)], k=1,...p . 7

Define the set

W={(t,xy)eR>%te[0,T], a(t)<y<x<A(t)}
and consider the functiamW—R defined by

g(t.x y) = f(t,y) + Fi(E y)(x=y) =K(x=y)* for (txy)eW.

Clearlyf(t,x)=g(t,x,x) for (t,X)eQ[a,f] .

Let te[0,T] andx,y,zeR are such thai(t)<z<x<y<g(t). Then
(8) g(ty.2-9(tx2=f, (t.2(y-x)-K(y+x-22)(y-x)2-(L+2KP)(y-x)
where Rsup{ A(t)-a(t): t[0,T]} .

Define the sets
W,={(txy) eR%a(t)<y<x<B(t)}, k=1,...p
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and consider the functiomgW,—R, k=1,... p defined by
R Y)=T W) 1 (DX = ¥) -Tilxy)?, (xy) €Wy .
Clearly l(X)=h(x,X) for xe[a(t),ft)] . Furthermore, itx(t)<z<x<y<A(t) then

(9) hdy.2)- h(x2)=1(2)(y - X) -Tly+%-22)(y-X)=-(Sc+2TP) (y-X)
whereS=sup{ |l (X)|:xe[ a(ty), St} k=1,...p .

We will use the following lemma:

Lemmal: (Theorem 16.2, [1].)Assume that for t>t, the following inequality holds:
t
u(t)<at)+ [b(s)u(s)ds+ Y. Au(t,)
t to<t, <t
where u,a,bePCR;,R.), 50, k=1,2,...,and O<ty<ti<...<t<... arefixed numbers.
Then for t>t, the following inequality holds:

u(t)<a(t)+ j a(s)b(s) [ @+ ) exr{j b(r)dr]ds +

s<t, <t

+ >, at)p 1 (1+ﬂj)eX[{Ib(T)dr]

to<ti<t te<t; <t

Consider the impulsive differential equation
(10) X=g(tx(t)), te[0,T], t£t,, k=1,...p

(11) Axit:tk = (X(t), a(t)), k=1,...p

We are going to prove the following lemma for essste of a solution of the boundary
value problem (10), (11), (3).

Lemma 2: Suppose that conditions A1-A4, A6, and A7 hold. Then the boundary value
problem (10), (11), (3)asa solution xe S|, f] .

Proof: From the definition of the function g and inelities (4) and (6) it follows that for
te[0,T], t=t, k=1,... p we have the inequalities
(12)  aO<f(t,ot)=g(t,a(t), A1)
and

BUOEE,A1)=f(tat)+ £, (LAO)AL)-at)]+
+% f o (LEDAD-aAD]*>9(t 40, A1),
wherea(t)<&(t)<A(), te[0,T].
From the definition of the functiong Bnd inequalities (5) and (7) it follows that for
k=1,..p we have the inequalities
(14)  Aa|, < lda(t))=hda(t),at))

and
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(15) AB|iy, 2 WBI=Iatd)+ 1 (e (ty)) [B)-aftd]+

#2160 [0 e =N A. o)
wheredie (a(t), A1)

From (12) -(15) it follows that the functiomsandf are lower and upper solutions
respectively of the boundary value problem (10))(13).

Define the operator F on &[j] by the equality
T
(16) M(t)=CAexp[-(L+2KP)t]+ j G(t,9)q(t, x(s))ds +
0

+ G0N (1)
for xeS[a,f] andte[0,T], where
(17) A[M+Nexp(-(L+2KP)T)]*,
q(t,u)=g(t,u,(t))+(L+2KP)u, (t,u)eQ[a.f]

AM exp[-(L + 2KP)(t —9)[,0< s<t<T

(18) Gft,9) :{
(AM =1) exp[-(L + 2KP)(t—5)],0<t<s<T

Clearly if xe S[e, ] andx(t)=Fx(t) for te[0,T] (i.e.x is a fixed point for the operator F),
thenx=x(t) is a solution of the boundary value problem (10},), (3).
We are going to show thé&{(t,s)>0 fort,se[0,T] .

Indeed, from (17) it follows that

A=[M(1- % exp(-(L+2KP)T))I?, or AM[l-‘%‘ exp(-(L+2KP)T)]=1

By A4 we have that

N
M

Therefore AM-0 and AM-E-ANexp(-(L+2KP)T)>0, and from these inequalities, using
(18), we have thab(t,s)>0 fort,s<[0,T]. From inequalityG(t,s)>0 and the inequality (8) and
(9) it follows that the operator F is monotone rm@ereasing, i.e. fox,ye S[e, £l andx(t)<y(t)
for te[0,T]we have K(t)<Fy(t) for t[0,T] .

Therefore F:S, 4] —S[«.f], and by Shauder's Theorem there exists a fungti®@ie, ]
such thak=Fx . As we noted before this means tkat(t) is a solution to the boundary value
problem (10), (11), (3).

This complites the proof of Lemma<®.

exp(-(L+2KP)Tx1
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We are going to justify a method for constructinm@notone sequence of piecewise
continuous functions that is quadratically conveatge a solution of the boundary value
problem (1) - (3).

Theorem 1: Suppose conditions (A) hold.
Then there exists a sequence {u, |~ , of functions u,e PCY([0,T],R), n=1,2,...,such that

Ug(t)<us(H)<...<u,(t)<..., which is quadratically convergent to a solution u of the boundary
problem (1) - (3).

Proof: Setu=c. By Lemma 2 we have that there exists a solutjerS[«, ] of the
boundary value problem (10), (11), (3).
Suppose that we have defined the functiafs,, ...,u.1PC([0,T],R) such thatye S[u,.
A, j=1,....n-1 and
Uo(t)<uy(B)<....<un4(t), te[0,T]
where the functiom, j=1,...,n-1 is a solution of the boundary value problem
(19) X =g(tx,u.1(t), te[0,T], t2ty, k=1,... p,

(20) Axit:tk = hy(X(t.U1(t), k=1,...p
(21) Mx(0O}+Nx(T)=c
From the definitions of the functiogs h andu,.; and inequality (6) it follows that for
te[0,T], t=ty, k=1,... p we have the following inequality
9t Un-2(t),Un-1 () =F(t,Un 1 (£)) 2F(1, Un2()+ £ (tUn2(8) [Un-a(t)-Un2(1)]-
'K[ un-l(t)'un-Z(t)] 2=g(t,un_1(t),un_2(t)): u;u—l (t)
ie.
(22) up (1) <g(t,una(t),un1(t), te[0,T], for t=ty, k=1,...p.
From the definitions of the functiog andu,, ; and inequality (7) it follows that for
k=1,...,p we have the following inequalities

Pi(Un-2.(8 Un-1(ti0)=1(Un-1(ti) 21 (Un-2(t)+ T (Un-2(8d)[Un-1(t)-Un-2(t]-
'Tk[ un-l(tk)'un-Z(tk)] 2:hk(un-l(tk) ’ Un-Z(tk)): Aun-l

t=t,
i.e.
(23) Au,,

1=, Shi(Una(t),un1(td), k=1,...p .

By (22) and (23) we have that the functign is a lower solution of the boundary problem
(19) - (21) forj=n.

Furthermore from inequalities (4)-(7) we obtain
B, A(1))=9(t, (1), un1 (1), te[0,T], t2t, k=1,... p,
AB| . =AM B, Una(8), k=L, p

which shows that the functighis an upper solution of the boundary value prob{&w)-(19)
forj=n.
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By Lemma 2 there exists a solutioge S[u,, 1, 5] of the boundary value problem (19)-(21)
for j=n. Furthermorey, is a fixed point of the operator F, defined on.3[5] by
Fx(t)=CAexp[-(L+2KP)t]+

+ij9qAam9mS+§;xnumumnxw4m»

where the number A is determined from(17), the fimmcG is defined by (18), and
On(t,X)=a(t,X, U1 (1)) +(L+2KP)X for (t,X) e Q[un.1,4] .
This means that fae[0,T] we have

(24) uy(t)=Fu,(t)=CAexp[-(L+2KP)t]+ } G(t,9)q,(t,u,(s))ds+

£ 36 Uy (1), Uy 4 (4)
k=0

Thus we have constructed a sequefigg” , of functionsu,e PCY([0,T],R) such that
Une S[un.g,4], n=1,2,..., for which
U <Us (<. .. <U(D)<. ... t[0,T].
Clearly there exists a functiarePCY([0,T],R) such that
lim u, (1) = u(®), te[0,T]
From (24) it follows that the sequenge, |

every finite closed interval, which does not comtgik=1,... p, and that
lim g, (t,u, (t)) =g(t,u(t),u(t))+(L+2KPu(t)=f(t,u(t))+(L+2KP)u(t), t<[O0, T].

, is uniformly convergent to the function u on

Therefore the functioo=u(t) is a solution of the boundary value problem
X' +(L+2KPX=f(t,u(t))+(L+2KP)u(t), te[0,T], t=ty, k=1,... p,
A, = IWX(1)), k=1,...p
Mx(0)+Nx(t)=C
and that means thatu(t) is a solution of the boundary value problem (2)-(3
Finally we show that the sequen{te,}::l is quadratically convergent to the functian

Consider the function B[ «,f]—R, defined by
F(t,x)=f(t,X)+KXC, t,X)eQ[aAl.

From conditionA2 and inequality (6) it follows that there existsanstant @0 such that
(25) & F, (t,x)=<Q for t.x) e Q[a.f]

Let z,(t)=u(t)-un(t), te[0,T], n=1,2,... . Using the fact that=u(t) is a solution of the
boundary value problem (1)-(3), angku,(t) is a solution of the boundary value problem (19)-
(21) forj=n, we obtain
(26) z, ()=F(t,u(t))-g(t,un(t),un1(t)=

=f(t,u(®)-f(t,un1(t))- F (Una(0)[Un(D)-Un2 (D] +
+K[ U2 (t) —uZ, (1) ], te[0,T], tty, k=1,...p

Using (25) and (26), the Mean Value Theorem andiéfiition of the function F, we
obtain that there exist functionsandz, u,1(Y)<&t)<u(t), u,1()<H)<LL), te[0,T] such that
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(27) z, ()= f,; (LSOU®)-Un2 (D] F (U2 () [Un(t)-Una ()] +
K ur () —ur () IR (6ED)- F (G Una(®)+K(U®)-Una (0)1(u(t)-
“Un-1(1)+] Fy (tUn-1(1))-K(u(®)+un ()] (ut)-un(t)=
= P (&, 77(8) (E0)-Una(£)) (U(t)-Un 2(8))+ yn(t) (U(D)-Un(D)+K (U(t)-Un ()<
<(Q+K) Z2, ()+wn(t)zy(1), te[0,T], tt,, k=1,...p

where yy(t)= F, (t,un.1(t))-K(U(t)+Uun(t)) -

Consider the functionSy:[ ofty),f(t)] =R, k=1,... p, defined by
G(X)=I+Ti¢, xe [t At)]-

From conditionA3 and inequalities (7) it follows that there exishstants -0 such that
(28) G (x)=<Qx for xe[a(t). Ati] -

Again we use that=u(t) is a solution of the boundary value problem (D)&Bdu,=uy(t) is
a solution of the boundary value problem (19)-(t)=n and we obtain

(29) Az, =1u(ti))-hiun(ti), Un-1(t))=
=l (U(t))-1k(Un-1(t)- Gy, (Un-2(t)) [Un(t)-Un-2(t)]+

+Tf ur?(tk) - ulf—l(tk) ]
Using (28) and (29), the Mean Value Theorem andli#fmitions of the function&,, we
obtain that there exists constagts[un.1(t),u(t)] and re[un1(t),&d, such that

(30) Az, = Iy (GI[U(t)-Un-1(td]- Gy (Un-1(t))[Un(ti)-Un1(tid] +
+Tf ur?(tk) - ulf—l(tk) I<
<[ G (80~ Gy (Un-a(td)+ Ti(U(t)-Un-2(8)] (U(t)-Un-1(ti)+
+H Gy (Un-2(t9)- Ti((t)-Un(td) 1 (U(ti)-Un(t))=
= Gy (7 Un-1(69) (U(6)-Un 1 (6)+ B (U(t)-Un(8)+ T(U(t-Un 2 ()<
QT z; (t)+B" Z4(t),
where b"” = G; (Un.1(t))-Ti(U(t)-Un(ty) -
By (27) and (30) the functiorg satisfy the impulsive differential inequalities
(31) Z, (D<yn()z(H)+HQ+K) Z2 (1), te[0,T], tt,, k=1,....p
(32) Az, < B z,(t)+(Qu+ Ty) 22 (t), k=1,...,p
(33) Mz,(0)+Nz(T)=C

By Lemma 1 we have

(34) z()<z:(0) [T@+K") G(t)+j [1@+5") o)™ (8)(Q+K) z: (9)ds+

O<t, <t 0 s<t <t

+ 2 [Ta+bM)o®o™t)(Q + Tz () , te[0,T]

O<t <t t <tj<t
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whereo(t)=exp (j' v, (s)dsj .

By the boundary condition (33) and inequality (84dllows that forte[0,T] the following
inequality holds:

(35) z=2,(0)

< [% +[1as bﬁm)"m} {I [1@+b™)o (Mo ™ (8)(Q+K)Z(S)ds+
k=1

0 s<t<T

+ Zp: [Ta+ bJ(n))O-(T)O-il(tk)(Qk +Tk)Z§ (tk)}

k=1t <t;<T

From inequalities (34) and (35) it follows thathexists a constarit-0 such that

supf{ |Z:(t)|:te [0, TT} <Asupf{|z,1(t)te[0, T},
which means that
U Ul <A U- U1 |

This concludes the proof of Theoreméi.

Remark: In the case when the boundary value problen{3)L)s without impulses, i.e.
1(X)=0, k=1,... p and M=-N=1, C=0 (i.e. we have a periodic problem for ordinaryetiéntial
equations), the results in this paper are identidthl the results in [2].

Consider the impulsive differential equation (), with periodic boundary condition
(36) x(0)=x(T)
Then we have the following corollary of Theorem 1.:

Theorem 2: Suppose conditions A1-A3, and A5 hold. Then there exists a monotone
increasing sequence {un}f:0 of functions u,e PCY([0, T],R), which is quadratically convergent
to a solution u of the periodic problem (1), (2), (36).
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