
207

ЮБИЛЕЙНА НАУЧНА СЕСИЯ – 30 години ФМИ
ПУ “Паисий Хилендарски”, Пловдив, 3-4.11.2000

MULTIPLE ERROR CORRECTING ALGORITHM FOR
SOFTWARE PROTECTION OF ARCHIVE DATA

Mairtin O’Droma, Ivan Ganchev Ivanov

A self-contained error correcting code (ECC) algorithm is proposed. Based on the use of
BCH codes it envisaged as part of an adaptive data protection (ADP) application
programme. It is designed to operate (decode and error correct) for a range of BCH codes
providing increasing level of protection against error in accordance with user choices. While
such codes cause loss of compression the improvement in error probability is dramatic, e.g.
from 10-5 to10-29 approximately for BCH(8,8), with a 20% loss of compression.

Keywords: BCH codes; CD-ROMs; DVD; archives; SKHNE algorithm; error protection

1 Introduction
Coding to protect against errors arising in the electronic archival writing or retrieval

process or in the archive itself, fig. 1, is an important field [1]. Driven by user expectations
and the potential for frustration, damage and cost in the event of archived data corruption
many schemes have been designed to reduce the probability of error, e.g. c.f. [1, 2, 3, 4 and 5].
Some schemes are built into the archiving software. Some of these are error detecting only,
e.g. CRC-32 being a popular and powerful one. Others attempt to recover corrupted data e.g.
the ARJ program [4] can be made to repair up to 4 damaged 1kbyte long sections in a 1Mbyte
block. Other schemes are embedded into the hardware. In CD-ROM and DVD hardware
implemented (right of 'A', fig.1), powerful, Reed Solomon product code (RS-PC) and cross-
interleaved RS code (CIRC) are used resp., e.g. [5], [6], [7] and [8]. The latter can cater for
6.0mm burst error and both add c. 23% and 13% overhead resp., [9]. However regardless of
the in-built error protection power in any archive system, requirements will continue to change
as a function of service application, user needs and so forth, e.g. [5], [10]. Thus there is room
for an optional, additional, user-friendly, software-based scheme for multiple error protection,
the level of protection being chosen by the user and traded against increased storage
requirements. Such an adaptive data protection (ADP) application has been developed based
on BCH codes1. It would be inserted at 'A' in fig. 1 and may include its own compression. The
error protection system to the right of 'A' if already present, as part of the recording device
(embedded firmware) e.g. DVD, becomes a second layer of protection. This paper will
describe the error-correcting algorithm used in this scheme. The algorithm is based on recent
developments in the understanding of BCH decoding mechanisms and contains some
innovations of its own.

1 Telecom applications using efficient binary BCH codes have emerged. Examples are the USA TDMA
cellular system employing a BCH(48,36,5) scheme and the paging protocol specification POCSAG
employing BCH(31,21,5); [in (n,k,d) notation, the latter being equivalent to BCH(5,2) in the (m,t)
notation used in this paper]. These are fixed systems as compared to the user-controlled, flexible,
multilevel error protection reliability offered by the archival system proposed here.

208

2 A BCH error correction archival system

Before describing the error correcting algorithm some brief comments are presented on
BCH encoding.

2.1 BCH Encoding

The Bose-Chaudhuri-Hocqueghen (BCH) codes are a generalization of Hamming codes
which allow multiple error correction [11], [12]. They have the attractions for this application
of flexibility in the choice of those parameters which dictate their error correcting power. Also
at block lengths of a few hundred or less, many of these codes are among the most efficient
known, [13]. Releveant background is briefly presented here to facilitate explaining the BCH
ECC algorithm.

Since BCH codesets are cyclic linear block (n,k) codes any valid n-tuple member can be
represented by a polynomial of degree (n-1) or less which has a characteristic unique
generator polynomial G(x) as a factor. The polynomial coefficients are required to be elements
of a finite Galois field, designated GF(q) where q is the order of the field. GF(q) is a prime
field when q is a prime and is an extension field over a prime field when q is a power of a
prime. In the former, the field has as elements the integers 0,… , q-1, and the operations are
simply modulo q multiplication and addition. In the latter (say q = pm where p is prime), then
the field elements are all possible polynomials of degree m-1 where the coefficients are from
the prime field GF(p). The number p is called the characteristic of GF(pm). Multiplication and
addition are executed by multiplying and adding these polynomials in the usual way and then
reducing the result modulo a special degree-m polynomial p(x) which cannot be factored using
only polynomials with coefficients from GF(p).

In all finite fields there exists at least one element α, called a generator or primitive
element, such that every other nonzero element in the field can be expressed as a power of this
element. A primitive element αααα in a field GF(q) can easily be found by simply checking the
powers of each field element. For this it must satisfy the following rule: αααα is a primitive
element of GF(q) iff the powers αααα , αααα 2 ,… , αααα q-1 {= αααα 0} are distinct and produce all the non-
zero elements of GF(q).

Potential Errors
Original

file
Compression

Segmentation,
error protection

encoding &
writing

 Figure 1. A block diagram of the typical archival-retrieval process

Extracted
file

De-
compression

Retrieving,
decoding, error

handling &
 re-assembly

Archive A

209

The BCH codes are most easily defined in terms of the roots of the generator polynomial,
G(x). Thus a primitive t-error-correcting BCH(m,t) code over GF(pm) of block length

n = (qm -1) has 121 000 ,...,, −++ tmmm ααα as roots of G(x) for any m0, where αααα is a primitive
element of GF(pm). Those codes with m0 = 1 are called "narrow-sense BCH codes" and those
defined over GF(2m) are called binary codes.

In designing a binary BCH(m,t) code, the choice of the primitive element of GF(2m) is
immaterial, [14]. Thus, in this respect, the encoder and decoder should use the same primitive
element together with matching encoding and decoding techniques. The archiving algorithm
proposed for the ADP application uses BCH generator polynomials taken from Clark & Cain,
[13].

The encoding process: This follows a straight forward implementation e.g. [14] of the
standard systematic BCH(m,t) cyclic code generation procedure:

c(x) = b(x)x n-k + h(x), where h(x) = {b(x) x n-k }modulo{G(x)};

c(x) and b(x) represent the n and k tuple codeword and message word resp. Letting d be the
code's minimum Hamming distance, the BCH(m,t) and BCH(n,k,d) designations of these
codes are identical when

n = 2m-1; d=2t+1; and k=n-{degree of G(x)}

2.2 BCH Decoding and Error Correction

The error correcting decoding process implemented operates on principle of choosing the
valid codeword vector, c, which is at the minimum Hamming distance (i.e. MDD) from the
retrieved data vector, r. This MDD choice is also the maximum likelihood, ML, one for
equally likely source symbols at the encoding stage.

The BCH decoding algorithm operates by seeking that error vector e of minimum
Hamming weight such that c=r+e. This it does by computing the syndrome (an n-k tuple) of
the retrieved vector through multiplying it by the parity check matrix. For BCH codes, there
are several forms of the syndrome. In the form used here, [14], the syndromes Si of the
retrieved sequence vector r, =rj, j=0,…,(n-1), are defined as the values

(1) ij
n

j
ji

rS α∑
−

=

=
1

0

, i = 1, 2,…, 2t ,

where α is the primitive element of GF(2m); it can be shown that S2i = Si
2. If Si=0 for i=1,…,

2t, then the retrieved sequence is a valid code word, (and hopefully the original code word
produced by the BCH encoder). The syndrome polynomial can be written:

(2) )(
12

0
1

12
2

2
321 ∑

−

=
+

− =++++=
t

i

i
i

t
t zSzSzSzSSzS

Error locator ΛΛΛΛ(z) and error evaluator Ω(z) polynomials: If the decoder's retrieved
sequence has νννν, ≤ 2t, errors in error locations j1, j2, …, jνννν , then its ΛΛΛΛ(z) and Ω(z) polynomials
can be written [14]:

(3) ∏
=

−=Λ
ν

α
1

),1()(
k

j zz k and ∑ ∏
= ≠=

−=Ω
ν ν

αα
1 1

).1()(
k klandl

ij
j zez lk

k

For νννν errors the degree of ΛΛΛΛ(z) is νννν and of Ω(z), less than νννν. When t or less errors occur in the
retrieved sequence, then the following equality holds, [14]:

210

(4) Λ(z)S(z) ≡ Ω(z)mod(z2t)

To pinpoint the bits in error in the retrieved sequence ΛΛΛΛ(z), as its name implies, must be
found. For this eq. 4 is the "key equation" to be solved. The reciprocals of the roots of ΛΛΛΛ(z)
correspond to the error locations. Inverting the retrieved vector symbols (bits) in these
locations effects the error correction.

Finding ΛΛΛΛ(z): Berlekamp [15] was first to develop an algorithm to find the minimum-
degree ΛΛΛΛ(z) which satisfies eq.4. It is quite an efficient one, which Massey [16] later
improved. However, the technique used here adapts, and implements, a conceptually simpler
technique based on the recently reported Sugiyama-Kasahara-Hirasawa-Namekawa (SKHN)
algorithm, [17], which in turn is based on Euclid's algorithm; for brevity it is called here the
SKHNE algorithm.

SKHNE Algorithm: Euclid’s recursive technique for finding the greatest common divisor
of two polynomials (or two integers), can be stated as follows: if a and b are two polynomials
where deg(a) > deg(b), then b is the greatest common divisor if amod(b) = η = 0. If η ≠ 0 then
a is replaced with b and b with η, and the operation is repeated until the condition η = 0 is
satisfied. In the process of finding this greatest common divisor, d, the algorithm calculates
two polynomials f and g such that fa+gb=d.

For the purposes of the SKHNE algorithm the useful aspect of this process is not in the
final answer but in the partial results, as shown in the following. At each iteration i it can be
readily shown that a set of polynomials f i, gi and ηi are generated such that
(5a) iii bgaf η=+

In noting that eq.5(a) may also be written
(5b))(mod)()()(zazzbzg ii η≡

if a(z) is set to z2t and b(z) to S(z), such that

(5c))mod()()()(2t
ii zzzSzg η≡

then at some stage in the iterative process, say stage i = n, when deg[ηn(z)]<t, this equation
becomes identical to the 'key equation', eq.4, with ηn(z) = Ω(z) and gn(z) being the desired
polynomialΛ(z).

This part of the algorithm can be implemented by the three steps:
i) Apply Euclid’s algorithm to a(z)=z2t and b(z)=S(z), using the following initial

conditions:

 () 01 =− zg , () 10 =zg , () () tzzaz 2
1 ==−η and ())()(0 zSzbz ==η .

ii) In each iteration i (i = 1, 2, …) divide ηηηηi-2(z) by ηηηηi-1(z) and obtain the quotient qi(z)
and the remainder ηηηηi(z). Obtain polynomial gi(z) by the formula: gi(z)= gi-2(z) - qi(z).gi-1(z).

iii) Stop the recursive iterations when deg[ηn(z)]<t, and set ΛΛΛΛ(z) =gn(z).

Termination of the algorithm: The algorithm will terminate properly (step iii) if no more
than t errors occurred in the retrieved words because only in this case does the key equation
holds. Otherwise (i.e. if more than t errors occur) the algorithm may produce an incorrect code
vector (incorrect correction), or it may 'fail'. The latter failure, which has two modes, is
detectable and is used to signal that the assumption that at most t errors have occurred is false.
The two modes, [14], are:

Failure mode (a): It does not terminate properly. This occurrs iff zt |S(z).

211

Failure mode (b): It terminates but produces a faulty Λ(z). This may happen if (i) 0 is a
root of ΛΛΛΛ(z) or (ii) ΛΛΛΛ(z) does not split into linear factors. Polynomial ΛΛΛΛ(z) is constructed to
split into linear factors with non-zero roots.

Error Correction: Having found ΛΛΛΛ(z) the actual error locations can now be pinpointed.

Since ΛΛΛΛ(z) has roots νααα jjj −−− ,...,, 21 (eq. 3a), where νννν ≤≤≤≤ 2t and j1,j2,…,jv are the error
locations [i.e. an error occurs in position j iff ΛΛΛΛ(αααα-j)=0]. The roots of ΛΛΛΛ(z) are thus found by
simply checking which elements y of GF(2m) satisfy the equation ΛΛΛΛ(y) =0. If αααα p(k) is such a
root, then the location jk of the corresponding error location in the retrieved vector r is
(6) jk = 2m - 1 - p(k),
counting from the right, starting with 0, and where k will always be ≤νννν. Thus the MDD error
vector e is constructed and added to r to yield the corrected retrieved code vector c (i.e. a
section of the archive data, which has yet to be de-compressed).

3. Implementation

Table 1 shows the steps in this SKHNE error location and correction algorithm and fig. 2
shows a block diagram of the time domain decoder structure as implemented. The language
used was C++. This structure is akin to the general structure for time domain decoders, [13].
In fig. 2 apart from the retrieved sequence buffer and error correcting summer, the decoder
contains:
a) a transform computer, which produces the syndrome components Si via eq. 1, and

syndrome polynomial S(z), via eq. 2,
b) the algorithm, “Solve key equation", to find)Λ(z , and

c) the search algorithm to find the error locations and construct the error vector, e which is
added to the original receive vector r thus executing the corrections.

4. Conclusion

This algorithm is the corner stone of a flexible, user controlled, efficient archival scheme
providing multiple levels of reliability of the integrity of archived data in respect of errors. It
provides effective capabilities for the correction of errors which have occurred in the archive
itself, in the archive writing or the retrieval process. A reasonable approximation for the error
rate, AER, provided by the BCH(m,t) codes, for raw random probability of error p, is

 1

1

12
AER +










+

−
= t

m

p
t

For example if using a BCH(8,8) code, AER is 10-29 for p=10-5. The BCH(m,t) encoding is
applied to the source file after it has been compressed, (and perhaps after any other software
application-specific error protection scheme is included). The final file will be a little larger
than the compressed file, e.g. 20% for BCH(8,8); i.e. if the compressed file is 12.5% of the
original file, the final file would be 15% of the original file.

r j)(zΛS(z)
r j ej

cj

Transform
Computer

Solve
Key

Search for
Error

Figure 2. Binary BCH Decoder Block Diagram

212

Table 1: Seven Step (S) SKHNE error location and correction algorithm

S Action S Action

1 Retrieve r. Calculate Si (eq. 1). Write S(z) as
eq.2. If S(z)=0, r is error free: set e to zero
and go to step 7; otherwise go to step2.

4 Check for failure mode (b) of
SKHNE algorithm: If positive
then stop and issue message 1.
Otherwise, go to step 5.

2 Check for failure mode (a) of SKHNE
algorithm: if positive stop and issue message
1; otherwise, go to step 3.

5 Find: (i) the roots, α p(k), of ΛΛΛΛ(z);
(ii) error locations jk in r, eq.6.

3 Apply SKHNE algorithm to find)(zΛ . If

the first remainder ηi(z), which has degree < t
is zero then there are more than t errors in the
word: stop and issue message 1. Otherwise
go to step4.

6 Construct error vector e with 1's
in positions jk and 0's elsewhere.

7 Obtain the recovered corrected
code vector c, via e + r = c.
Return to step 1 & repeat the
process until decoding of all
codewords is completed.

Message 1: "Error Message – more errors have occurred in the archival retrieval than is
possible to correct. Attempt retrieval with another device drive as the errors may not be
inherent to the archive."

REFERENCES

1 K.A.S. Immink. Coding Techniques for digital recorders. Englewood Cliffs, New Jersey,
Prentice Hall Int. (U.K.) Ltd., 1991.
2 J. Taylor. DVD demystified: the guidebook for DVD-video and DVD-ROM. McGraw-Hill.
(ISBN 0-07-064841-7). 1997.
3 DVD Forum web site. http://www.dvdforum.org. To date.
4 R. Jung. ARJ program 2.60. http://www.arjsoftware.com/ ARJ.DOC. 1998
5 S.B. Wicker. Error control systems for digital communication and storage. Prentice Hall.
1995.
6 R.C. Chang and C.B. Shung. A (208,192;8) Reed-Solomon decoder for DVD application.
Proc. of IEEE International Conference Communications, ICC 98 (ISBN: 0-7803-4788-9).
Vol. 2. (1998). Pp.957-960.
7 P. Benachour, B. Honary, and G. Markarian. Improved decoding technique for the DVD.
IEEE Colloquium on Audio and Music Technology: The Challenge of Creative DSP (Ref. No.
1998/470). (1998). Pp 17/1-17/5.
8 K. Oh; W. Sung. An efficient Reed-Solomon decoder VLSI with erasure correction. Proc. of
IEEE Workshop on Signal Processing Systems, 1997. SIPS 97 - Design and Implementation.
(Editor(s): Ibrahim, M.K., Pirsch, P., McCanny, J.; ISBN: 0-7803-3806-5). (1997). Pp. 193-
201.

213

9 D.J. Parker. Defining DVD. IEEE Multimedia. (ISSN: 1070-986X) Vol.6, Issue:1. Jan-Mar.
(1999). Pp. 80-84
10 J.W. Einberger. CD-ROM as a mass storage device. Proc. 9th IEEE Symposium on Mass
Storage Systems. Boulder, USA. (Editors: Friedman, K., O'Leary, B.T.; ISBN: 0-8186-8880-
7). (1988). Pp.125 - 129.
11 A. Hocquenghem. "Codes correcteurs d'erreurs", Chiffres, 2, (1959). Pp.147-156.
12 R.C. Bose, and D. K. Ray-Chaudhuri. On a class of error correcting binary group codes, Inf.
Control, 3, (1960). Pp.68-79.
13 G.C. Clark, Jr. and J. B. Cain. Error-Correcting Codes for Digital Communications. Plenum
Press, 1981.
14 O. Pretzel. Error-Correcting Codes and Finite Fields. Clarendon Press, 1992.
15 E. R. Berlekamp. On decoding binary Bose-Chaudhuri-Hocquenghem codes, IEEE Trans.
Info. Theory, 11, (1965). Pp.577-9.
16 J.L. Massey. Shift-register synthesis and BCH decoding, IEEE Trans. Info. Theory, 15,
(1969). Pp.122-7.
17 Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa. A method for solving key equation
for decoding Goppa codes, Inf. Control, 27, (1975). Pp.87-99.

Dr. Mairtin O’Droma,
Electronic and Computer Engineering,
University of Limerick, Ireland.
Mairtin.ODroma@ul.ie

Dr. Ivan Ganchev,
Dept. of Computer Systems,
University of Plovdiv, Bulgaria.
ivgan@pu.acad.bg

