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MÖBIUS PLANES WITH SHARPLY
3-TRANSITIVE GROUP OF AFFINE

PROJECTIVITIES

Hans-Joachim Kroll

Abstract

In this paper we consider a class of Möbius planes, the so called (F)-planes. We
prove that an (F)-plane with sharply 3-transitive group of affine projectivities is
determined by the set of all circles through a fixed point and one further circle.
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Let (P, K) be a Möbius plane with point set P and circle set K 1. For each point
p ∈ P we define K(p) := {C ∈ K | p ∈ C} and Kp := {C \ {p} | C ∈ K(p)}. Then
A(p) := (P \ {p},Kp) is an affine plane.2 A(p) is called the affine derivation of (P, K) at
the point p.

There are different types of perspectivities to define in Möbius planes (cf. [2]). In
this paper we are concerned with affine perspectivities. Let A,B ∈ K(p). A mapping
π : A → B is called affine perspectivity with base point p, if π(p) = p and if the restriction
of π onto A \ {p} is a parallel perspectivity in the affine derivation A(p). Now let A,B
be two arbitrary circles and % : A → B a mapping. % is called affine projectivity if there
exists a finite number of affine perspectivities π1, . . . πn such that % = π1 ◦ . . . ◦ πn. For
any circle C ∈ K we denote by ΓC the group of all affine projectivities from C onto C.
Since for A,C ∈ K the groups ΓA and ΓC are isomorphic we may write Γ instead of ΓC

and may call Γ =: Γ(P, K) the group of affine projectivities of the Möbius plane (P, K).
The following results can be found in [4]:

(1) The group Γ acts 3-transitively on C.

1For the definition see [1], [3].
2This property is characterizing Möbius planes.
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(2) If the Möbius plane (P, K) is Miquelian then Γ is sharply 3-transitive.

The theorem, that for any projective plane the group of projectivities of a line is
sharply 3-transitive if and only if the plane is Pappian, gives rise to the question wether
the converse of (2) holds. A first step in this direction is the following result [4, (3.1)]:

(3) If Γ is sharply 3-transitive then each affine derivation of (P, K) is Pappian.

This paper deals with (F)-planes with sharply 3-transitive group Γ. A Möbius plane
is called (F)-plane if each circle which is tangent to three circles of a touching pencil
belongs to this pencil. As corollaries of the following theorem we get two further results
concerning the above question.

Theorem 1 Let (P, K) be an (F)-plane of order greater than 3 and K′ a second subset
of the power set of P such that (P, K′) is a Möbius plane. Let w be a point such that
K(w) = K′(w) and K ∩ K′ 6= K(w). If Γ and Γ′ := Γ(P, K′) are sharply 3-transitive then
K = K′.

Corollary 1 Let (P, K) be an (F)-plane with sharply 3-transitive group Γ. Let w be a
point and S a circle not containing w such that S is a conic of the affine derivation
A(w), then (P, K) is Miquelian.

Proof. Since S is a conic of A(w) there exists a subset K′ of the power set of P such
that (P, K′) is a Miquelian Möbius plane, S ∈ K′ and K(w) = K′(w). By (2) the group Γ′

is sharply 3-transitive, and therefore K = K′ by the theorem 1.

Corollary 2 Every finite Möbius plane (P, K) of odd order with sharply 3-transitive
group Γ is Miquelian.

Proof. The theorem of Qvist (cf. [5, p. 50]) implies that every finite Möbius plane is
an (F)-plane. Let w ∈ P and S ∈ K \K(w). By (3) the affine derivation A(w) is Pappian.
Hence, by Segre [6], S is a conic of A(w), and we can apply corollary 1.3

To prove the theorem we need the following equivalence relations on the circle sets
K and K \ K(w). Two circles A and B are called equivalent if there is a finite number of
circles C1, . . . , Cn such that A = C1, Cn = B and |Ci ∩ Ci+1| = 1 for i = 1, . . . , n − 1.
They are called equivalent with respect to the point w if in addition w /∈ Ci holds.

(4) Let (P, K) be a Möbius plane of order greater than 3, w ∈ P and A,B ∈ K \ K(w).
If A is equivalent to B then A is equivalent to B with respect to w.

Proof. 1. Let the order of (P, K) be even. By the theorem of Qvist (cf. [5, p. 50]) there
is exactly one point aw ∈ P \ A, aw 6= w such that each circle through aw and w is
touching A. This point is called the knot of A with respect to w. Let bw denote the knot
of B with respect to w. There is a circle T through w, aw, bw. Let p ∈ P \ (A ∪ B ∪ T )

3For the last conclusion we could also refer to the theorem of J.A.Thas from [7], if the order is different
from 11, 23, 59.
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and ap and bp denote the knot of A and B with respect to w respectively. Then there is
a circle C with p, ap, bp ∈ C. By the theorem of Qvist this circle C touches A and B and
does not pass through w.

2. Let the order of (P, K) be odd. Let X, Y, T ∈ K such that w /∈ X, w ∈ T and
|X ∩ T | = 1, |Y ∩ T | = 1. Let {x} := X ∩ T . By the theorem of Qvist there is a circle T ′

through x such that T ∩T ′ = {x} and |T ′∩Y | = 1. It holds w /∈ T ′. Hence, in a sequence
C1, . . . , Cn of circles with w /∈ C1, Cn and |Ci ∩ Ci+1| = 1 every circle Ci with w ∈ CI
can be replaced by a circle C ′i with w /∈ C ′i and |Ci−1 ∩ C ′i| = 1 = |C ′i ∩ Ci+1. Thus, —if
A is equivalent to B, then A is also equivalent to B with respect to w.

Now we prove the theorem 1 in several steps. For each circle X ∈ K \K(w) we denote
by )X( the class of all circles equivalent to X if (P, K) is of finite order, and the class
of all circles equivalent to X with respect to w if (P, K) is of infinite order. Note that
)X(⊂ K if the order is finite and )X(⊂ K \ K(w) if the order is infinite.

(a) Let A ∈ K \ K(w) and x, y ∈ P \ {w} two distinct points. Then there exist three
circles B1, B2, B3 ∈)A( such that B1 ∩B2 = B2 ∩B3 =3 ∩B1 = {x, y}.

Proof. In case of finite order the theorem of Qvist (cf. [5, p. 50]) implies that there are
at most two classes )A( and )B( and that half of the circles through two points belong
to )A( 4, and we are done as the order is greater than 3.

Now we consider the case of infinite order. We may assume x, y /∈ A. Let T denote the
unique circle with w, x, y ∈ T . For a ∈ A \ T let Xa ∈ K(x) \ K(w) and Ya ∈ K(y) \ K(w)
denote the unique circle with X ∩A = {a} and Y ∩A = {a}. We have w /∈ Xa or w /∈ Ya

for otherwise Xa = Ya = T contradicting a /∈ T . Since (P, K) is an (F)-plane there are
at most two points a′, a′′ ∈ A \ T, a′, a′′ 6= a such that Xa ∩Xa′ = {x}, Ya ∩ Ya′′ = {y}.
Therefore, as the order of (P, K) is not bounded, we may assume that there are four
circles X1, X2, X3, X4 ∈ K(x) with w, y /∈ Xi, |A ∩Xi| = 1 and |Xi ∩Xj | = 2 for i 6= j.
Then at least three of the four distinct circles B1, B2, B3, B4 ∈ K(y) with Bi ∩Xi = {x}
are equivalent to A with respect to w.

For p ∈ P , A,B ∈ K(p) and a ∈ A \ B, b ∈ B \ A we denote by [p,A, B, a, b] the
affine perspectivity in (P, K) from A onto B with base point p mapping a onto b. For
A′, B′ ∈ K′(p) and a ∈ A′ \ B′, b ∈ B′ \ A′ the corresponding affine perspectivity in
(P, K′) is denoted by [p,A′, B′, a, b]′.

(b) Let A,B ∈ K with w /∈ A,B and |A ∩B| = 1. If A ∈ K′ then B ∈ K′.

Proof. Let {u} := A∩B, a ∈ A\{u}, G ∈ K with w, a, u ∈ G, let {u, b} := B∩G and
B′ ∈ K′ with A ∩B′ = {u}, b ∈ B′. Now let x ∈ B \ {u, b}. Let H ∈ K with w, x, u ∈ H
and {u, h} := A∩H. We have G,H ∈ K′. For p ∈ {w, u} we define πp := [p,G,H, a, h] and
π′p := [p,G, H, a, h]′. Since K(w) = K′(w) we have πw = π′w. Hence the identities πp(u) =
u = π′p(u), πp(w) = w = π′p(w) and πp(a) = h = π′p(a) together with the assumption on
Γ and Γ′ imply πu = πw = π′w = π′u and consequently x = πu(b) = π′u(b) ∈ B′. In the
same way we obtain B′ ⊂ B, hence B = B′ ∈ K′.

A direct consequence of (b) is because of K(w) = K′(w) with (4) in mind
4If the order is even then there is only one class.
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(c) If S ∈ K ∩ K′ \ K(w) then )S(⊂ K′ and )S(=)S(′.

For S ∈ K ∩ K′ and s ∈ S we denote by ΓS
s and Γ′Ss the stabilizer of s in ΓS and Γ′S

respectively.

(d) If S ∈ K ∩ K′ \ K(w) then there is an s ∈ S such that ΓS
s = Γ′Ss .

Proof. For g ∈ S there is a circle G ∈ K(w) with G ∩ S = {g}. Let r ∈ S \ {g}.
By (a) there is a circle R ∈)S( with S ∩ R = {g, r} and there is an h ∈ G \ {g} with
R ∩ G = {g, h}. By (c) we have )R(=)S(⊂ K′, thus [g, G, S, h, r] = [g, G, S, h, r]′ =: φ
and consequently ΓS

φ(w) = φΓG
wφ−1 and Γ′Sφ(w) = φΓ′Gw φ−1. In every affine plane the group

of parallel projectivities is 2-transitive. Hence the stabilizers ΓG
w and Γ′Gw coincide since

K(w) = K′(w) and both Γ and Γ′ is sharply 3-transitive. Thus for s := φ(w) we obtain
ΓS

s = φΓG
wφ−1 = φΓ′Gw φ−1 = Γ′Ss .

Now we are able to show

(e) K = K′

Proof. Let S ∈ K ∩ K′ \ K(w). By (c) we have )S(⊂ K′. Now assume there is an
A ∈ K with A /∈)S( and w /∈ A. By (d) there is an s ∈ S with ΓS

s = Γ′Ss . By (a) there
exists T ∈)A( with s ∈ T and w /∈ T . Since T /∈)S( there is a t ∈ P with t 6= s and
S ∩ T = {s, t}. Let r ∈ T \ S. By (a) there are R1, R2 ∈)S( such that R1 ∩ R2 = {r, s}
and |Ri ∩ S| = 2. Furthermore let T ′ ∈ K′ be the uniquely determined circle in (P, K′)
with r, s, t ∈ T ′.

For i = 1, 2 we define {s, ri} := S ∩ Ri, πi := [s, S, T, ri, r] and π′i := [s, S, T ′, ri, r]′.
For π := π−1

2 π1 and π′ := π′2
−1

π′1 we have π(s) = s = π′(s), π(t) = t = π′(t) and
π(r1) = r2 = π′(r1). Hence π = π′ since ΓS

s = Γ′Ss .
For x ∈ T and i = 1, 2 let Xi ∈ K with Ri ∩Xi = {s}, x ∈ Xi and {s, xi} := S ∩Xi.

Then π′(x1) = π(x1) = x2. By (c) we have Xi ∈ K′ since Xi ∈)R(=)S(. Hence x ∈
X1 ∩X2 ⊂ T ′ since π′(x1) = x2. Thus T ⊂ T ′. In the same way we get T ′ ⊂ T .

Therefore T = T ′ ∈ K∩K′ \K(w) and A ∈ K′ by (c). Hence K ⊂ K′. Since both (P, K)
and (P, K′) are Möbius planes K ⊂ K′ implies K = K′.
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