ЮБИЛЕЙНА НАУЧНА СЕСИЯ – 30 години ФМИ ПУ "Паисий Хилендарски", Пловдив, 3–4.11.2000

MÖBIUS PLANES WITH SHARPLY 3-TRANSITIVE GROUP OF AFFINE PROJECTIVITIES

Hans-Joachim Kroll

Abstract

In this paper we consider a class of Möbius planes, the so called (F)-planes. We prove that an (F)-plane with sharply 3-transitive group of affine projectivities is determined by the set of all circles through a fixed point and one further circle.

AMS Subject Classification: 51B10

Let (P, \mathfrak{K}) be a Möbius plane with point set P and circle set \mathfrak{K} ¹. For each point $p \in P$ we define $\mathfrak{K}(p) := \{C \in \mathfrak{K} \mid p \in C\}$ and $\mathfrak{K}^p := \{C \setminus \{p\} \mid C \in \mathfrak{K}(p)\}$. Then $\mathcal{A}(p) := (P \setminus \{p\}, \mathfrak{K}^p)$ is an affine plane. ² $\mathcal{A}(p)$ is called the affine derivation of (P, \mathfrak{K}) at the point p.

There are different types of perspectivities to define in Möbius planes (cf. [2]). In this paper we are concerned with affine perspectivities. Let $A, B \in \mathfrak{K}(p)$. A mapping $\pi: A \to B$ is called affine perspectivity with base point p, if $\pi(p) = p$ and if the restriction of π onto $A \setminus \{p\}$ is a parallel perspectivity in the affine derivation $\mathcal{A}(p)$. Now let A, B be two arbitrary circles and $\varrho: A \to B$ a mapping. ϱ is called affine projectivity if there exists a finite number of affine perspectivities $\pi_1, \ldots \pi_n$ such that $\varrho = \pi_1 \circ \ldots \circ \pi_n$. For any circle $C \in \mathfrak{K}$ we denote by Γ^C the group of all affine projectivities from C onto C. Since for $A, C \in \mathfrak{K}$ the groups Γ^A and Γ^C are isomorphic we may write Γ instead of Γ^C and may call $\Gamma =: \Gamma(P, \mathfrak{K})$ the group of affine projectivities of the Möbius plane (P, \mathfrak{K}) .

The following results can be found in [4]:

(1) The group Γ acts 3-transitively on C.

¹For the definition see [1], [3].

²This property is characterizing Möbius planes.

(2) If the Möbius plane (P, \mathfrak{K}) is Miquelian then Γ is sharply 3-transitive.

The theorem, that for any projective plane the group of projectivities of a line is sharply 3-transitive if and only if the plane is Pappian, gives rise to the question wether the converse of (2) holds. A first step in this direction is the following result [4, (3.1)]:

(3) If Γ is sharply 3-transitive then each affine derivation of (P,\mathfrak{K}) is Pappian.

This paper deals with (F)-planes with sharply 3-transitive group Γ . A Möbius plane is called (F)-plane if each circle which is tangent to three circles of a touching pencil belongs to this pencil. As corollaries of the following theorem we get two further results concerning the above question.

Theorem 1 Let (P, \mathfrak{K}) be an (F)-plane of order greater than 3 and \mathfrak{K}' a second subset of the power set of P such that (P, \mathfrak{K}') is a Möbius plane. Let w be a point such that $\mathfrak{K}(w) = \mathfrak{K}'(w)$ and $\mathfrak{K} \cap \mathfrak{K}' \neq \mathfrak{K}(w)$. If Γ and $\Gamma' := \Gamma(P, \mathfrak{K}')$ are sharply 3-transitive then $\mathfrak{K} = \mathfrak{K}'$.

Corollary 1 Let (P, \mathfrak{K}) be an (F)-plane with sharply 3-transitive group Γ . Let w be a point and S a circle not containing w such that S is a conic of the affine derivation A(w), then (P, \mathfrak{K}) is Miquelian.

Proof. Since S is a conic of $\mathcal{A}(w)$ there exists a subset \mathfrak{K}' of the power set of P such that (P, \mathfrak{K}') is a Miquelian Möbius plane, $S \in \mathfrak{K}'$ and $\mathfrak{K}(w) = \mathfrak{K}'(w)$. By (2) the group Γ' is sharply 3-transitive, and therefore $\mathfrak{K} = \mathfrak{K}'$ by the theorem 1.

Corollary 2 Every finite Möbius plane (P, \mathfrak{K}) of odd order with sharply 3-transitive group Γ is Miquelian.

Proof. The theorem of Qvist (cf. [5, p. 50]) implies that every finite Möbius plane is an (F)-plane. Let $w \in P$ and $S \in \mathfrak{K} \setminus \mathfrak{K}(w)$. By (3) the affine derivation $\mathcal{A}(w)$ is Pappian. Hence, by Segre [6], S is a conic of $\mathcal{A}(w)$, and we can apply corollary 1.³

To prove the theorem we need the following equivalence relations on the circle sets \mathfrak{K} and $\mathfrak{K} \setminus \mathfrak{K}(w)$. Two circles A and B are called *equivalent* if there is a finite number of circles C_1, \ldots, C_n such that $A = C_1, C_n = B$ and $|C_i \cap C_{i+1}| = 1$ for $i = 1, \ldots, n-1$. They are called *equivalent with respect to the point* w if in addition $w \notin C_i$ holds.

(4) Let (P, \mathfrak{K}) be a Möbius plane of order greater than $3, w \in P$ and $A, B \in \mathfrak{K} \setminus \mathfrak{K}(w)$. If A is equivalent to B then A is equivalent to B with respect to w.

Proof. 1. Let the order of (P, \mathfrak{A}) be even. By the theorem of Qvist (cf. [5, p. 50]) there is exactly one point $a_w \in P \setminus A$, $a_w \neq w$ such that each circle through a_w and w is touching A. This point is called the *knot* of A with respect to w. Let b_w denote the knot of B with respect to w. There is a circle T through w, a_w, b_w . Let $p \in P \setminus (A \cup B \cup T)$

³For the last conclusion we could also refer to the theorem of J.A.Thas from [7], if the order is different from 11, 23, 59.

and a_p and b_p denote the knot of A and B with respect to w respectively. Then there is a circle C with $p, a_p, b_p \in C$. By the theorem of Qvist this circle C touches A and B and does not pass through w.

2. Let the order of (P,\mathfrak{K}) be odd. Let $X,Y,T\in\mathfrak{K}$ such that $w\notin X,\ w\in T$ and $|X\cap T|=1,\ |Y\cap T|=1.$ Let $\{x\}:=X\cap T.$ By the theorem of Qvist there is a circle T' through x such that $T\cap T'=\{x\}$ and $|T'\cap Y|=1.$ It holds $w\notin T'.$ Hence, in a sequence C_1,\ldots,C_n of circles with $w\notin C_1,C_n$ and $|C_i\cap C_{i+1}|=1$ every circle C_i with $w\in CI$ can be replaced by a circle C_i' with $w\notin C_i'$ and $|C_{i-1}\cap C_i'|=1=|C_i'\cap C_{i+1}.$ Thus, —if A is equivalent to B, then A is also equivalent to B with respect to w.

Now we prove the theorem 1 in several steps. For each circle $X \in \mathfrak{K} \setminus \mathfrak{K}(w)$ we denote by X (the class of all circles equivalent to X if (P, \mathfrak{K}) is of finite order, and the class of all circles equivalent to X with respect to w if (P, \mathfrak{K}) is of infinite order. Note that $X \in \mathfrak{K}$ if the order is finite and $X \in \mathfrak{K}$ if the order is infinite.

(a) Let $A \in \mathfrak{K} \setminus \mathfrak{K}(w)$ and $x, y \in P \setminus \{w\}$ two distinct points. Then there exist three circles $B_1, B_2, B_3 \in A$ (such that $B_1 \cap B_2 = B_2 \cap B_3 = A \cap B_1 = \{x, y\}$.

Proof. In case of finite order the theorem of Qvist (cf. [5, p. 50]) implies that there are at most two classes A (and B (and that half of the circles through two points belong to A (4, and we are done as the order is greater than 3.

Now we consider the case of infinite order. We may assume $x,y \notin A$. Let T denote the unique circle with $w,x,y\in T$. For $a\in A\setminus T$ let $X_a\in\mathfrak{K}(x)\setminus\mathfrak{K}(w)$ and $Y_a\in\mathfrak{K}(y)\setminus\mathfrak{K}(w)$ denote the unique circle with $X\cap A=\{a\}$ and $Y\cap A=\{a\}$. We have $w\notin X_a$ or $w\notin Y_a$ for otherwise $X_a=Y_a=T$ contradicting $a\notin T$. Since (P,\mathfrak{K}) is an (F)-plane there are at most two points $a',a''\in A\setminus T,\ a',a''\neq a$ such that $X_a\cap X_{a'}=\{x\},\ Y_a\cap Y_{a''}=\{y\}$. Therefore, as the order of (P,\mathfrak{K}) is not bounded, we may assume that there are four circles $X_1,X_2,X_3,X_4\in\mathfrak{K}(x)$ with $w,y\notin X_i,\ |A\cap X_i|=1$ and $|X_i\cap X_j|=2$ for $i\neq j$. Then at least three of the four distinct circles $B_1,B_2,B_3,B_4\in\mathfrak{K}(y)$ with $B_i\cap X_i=\{x\}$ are equivalent to A with respect to w.

For $p \in P$, $A, B \in \mathfrak{K}(p)$ and $a \in A \setminus B$, $b \in B \setminus A$ we denote by [p, A, B, a, b] the affine perspectivity in (P, \mathfrak{K}) from A onto B with base point p mapping a onto b. For $A', B' \in \mathfrak{K}'(p)$ and $a \in A' \setminus B'$, $b \in B' \setminus A'$ the corresponding affine perspectivity in (P, \mathfrak{K}') is denoted by [p, A', B', a, b]'.

(b) Let $A, B \in \mathfrak{K}$ with $w \notin A, B$ and $|A \cap B| = 1$. If $A \in \mathfrak{K}'$ then $B \in \mathfrak{K}'$.

Proof. Let $\{u\} := A \cap B$, $a \in A \setminus \{u\}$, $G \in \mathfrak{K}$ with $w, a, u \in G$, let $\{u, b\} := B \cap G$ and $B' \in \mathfrak{K}'$ with $A \cap B' = \{u\}$, $b \in B'$. Now let $x \in B \setminus \{u, b\}$. Let $H \in \mathfrak{K}$ with $w, x, u \in H$ and $\{u, h\} := A \cap H$. We have $G, H \in \mathfrak{K}'$. For $p \in \{w, u\}$ we define $\pi_p := [p, G, H, a, h]$ and $\pi'_p := [p, G, H, a, h]'$. Since $\mathfrak{K}(w) = \mathfrak{K}'(w)$ we have $\pi_w = \pi'_w$. Hence the identities $\pi_p(u) = u = \pi'_p(u)$, $\pi_p(w) = w = \pi'_p(w)$ and $\pi_p(a) = h = \pi'_p(a)$ together with the assumption on Γ and Γ' imply $\pi_u = \pi_w = \pi'_w = \pi'_u$ and consequently $x = \pi_u(b) = \pi'_u(b) \in B'$. In the same way we obtain $B' \subset B$, hence $B = B' \in \mathfrak{K}'$.

A direct consequence of (b) is because of $\mathfrak{K}(w) = \mathfrak{K}'(w)$ with (4) in mind

⁴If the order is even then there is only one class.

(c) If $S \in \mathfrak{K} \cap \mathfrak{K}' \setminus \mathfrak{K}(w)$ then $S(\subset \mathfrak{K}')$ and S(=)S(').

For $S \in \mathfrak{K} \cap \mathfrak{K}'$ and $s \in S$ we denote by Γ_s^S and $\Gamma_s'^S$ the stabilizer of s in Γ^S and Γ'^S respectively.

(d) If $S \in \mathfrak{K} \cap \mathfrak{K}' \setminus \mathfrak{K}(w)$ then there is an $s \in S$ such that $\Gamma_s^S = \Gamma_s'^S$.

Now we are able to show

(e) $\mathfrak{K} = \mathfrak{K}'$

Proof. Let $S \in \mathfrak{K} \cap \mathfrak{K}' \setminus \mathfrak{K}(w)$. By (c) we have $)S(\subset \mathfrak{K}'$. Now assume there is an $A \in \mathfrak{K}$ with $A \notin S$ (and $w \notin A$. By (d) there is an $s \in S$ with $\Gamma_s^S = \Gamma_s'^S$. By (a) there exists $T \in A$ (with $s \in T$ and $w \notin T$. Since $T \notin S$ (there is a $t \in P$ with $t \neq s$ and $S \cap T = \{s, t\}$. Let $r \in T \setminus S$. By (a) there are $R_1, R_2 \in S$ (such that $R_1 \cap R_2 = \{r, s\}$ and $|R_i \cap S| = 2$. Furthermore let $T' \in \mathfrak{K}'$ be the uniquely determined circle in (P, \mathfrak{K}') with $r, s, t \in T'$.

For i = 1, 2 we define $\{s, r_i\} := S \cap R_i$, $\pi_i := [s, S, T, r_i, r]$ and $\pi'_i := [s, S, T', r_i, r]'$. For $\pi := \pi_2^{-1} \pi_1$ and $\pi' := \pi'_2^{-1} \pi'_1$ we have $\pi(s) = s = \pi'(s)$, $\pi(t) = t = \pi'(t)$ and $\pi(r_1) = r_2 = \pi'(r_1)$. Hence $\pi = \pi'$ since $\Gamma_s^S = \Gamma_s'^S$.

For $x \in T$ and i = 1, 2 let $X_i \in \mathfrak{K}$ with $R_i \cap X_i = \{s\}$, $x \in X_i$ and $\{s, x_i\} := S \cap X_i$. Then $\pi'(x_1) = \pi(x_1) = x_2$. By (c) we have $X_i \in \mathfrak{K}'$ since $X_i \in R(=)S($. Hence $x \in X_1 \cap X_2 \subset T'$ since $\pi'(x_1) = x_2$. Thus $T \subset T'$. In the same way we get $T' \subset T$.

Therefore $T = T' \in \mathfrak{K} \cap \mathfrak{K}' \setminus \mathfrak{K}(w)$ and $A \in \mathfrak{K}'$ by (c). Hence $\mathfrak{K} \subset \mathfrak{K}'$. Since both (P, \mathfrak{K}) and (P, \mathfrak{K}') are Möbius planes $\mathfrak{K} \subset \mathfrak{K}'$ implies $\mathfrak{K} = \mathfrak{K}'$.

References

- [1] W. Benz, Vorlesungen über Geometrie der Algebren. Springer, Berlin-Heidelberg-New York 1973.
- [2] H. KARZEL & H.-J. KROLL, Perspectivities in circle geometries. Geometry von Staudt's point of view, Proc. NATO Adv. Study Inst., Bad Windsheim/Ger. 1980 (K. Strambach & P. Plaumann, eds.), 1981, pp. 51–99.
- [3] H.-J. Kroll, Anordnungsfragen in Benz-Ebenen. Abh. Math. Semin. Univ. Hamb. 46 (1977), 217–255.

- [4] H.-J. Kroll, *Perspektivitäten in Benz-Ebenen*. Beitr. geom. Algebra, Proc. Symp. Duisburg 1976, 1977, pp. 203–207.
- [5] H. LÜNEBURG, Die Suzukigruppen und ihre Geometrien. Springer, Berlin 1965.
- [6] B. Segre, Ovals in finite projective planes. Can. J. Math. (1955), 414–416.
- [7] J. A. Thas, Solution of a classical problem on finite inversive planes. Finite geometries, buildings, and related topics. Pap. Conf., Pingree Park/CO (USA) 1988, 1990, pp. 145–159.

Hans-Joachim Kroll Zentrum Mathematik TU München D-80290 München, Germany kroll@mathematik.tu-muenchen.de