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Abstract. An integro-summation inequality of Gronwall-Bellman type is proved and
applied for studying some qualitative properties of the solutions of differential equations
with a step function.
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1. Introduction
One of the most powerful apparatuses in the quantative theory of differential equations
is the integral inequalities of Gronwall-Bellman type [1], [2]. They are greatly used in
investigating diverse properties of the solutions of the differential equations such as
uniqueness, continuous dependence, stability, boundedness, etc.

In the paper we shall prove a linear integro-summation inequality of Gronwall-
Bellman type and shall use this inequality for investigating some qualitative properties
of the solutions of differential equations with a piecewise constant function (DEPCF).
Some properties of the solutions of DEPCF are studied in [3], [4]. We note that research
in this direction is motivated by the fact that DEPCF represent a hybrid of continuous
and discrete dynamical systems and combine the properties of both differential and
difference equations.

2. Main results
Let the points tk ∈ R, k = 0, 1, . . . be fixed such that t0 = 0, tk < tk+1, lim

k→∞
tk = ∞.

Definition 1 . The function g(t) : [0,∞) → R is called a step function if g(t) = gk for
tk ≤ t < tk+1 where gk = const, k = 0, 1, . . . .

Theorem 1 . Let the following conditions be satisfied:
1. The function g(t) : [0,∞) → [0,∞) is a step one such that 0 ≤ gk ≤ tk for

t ∈ [tk, tk+1), k = 0, 1, . . . .
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2. The function u(t) ∈ C([0,∞), [0,∞)) satisfies the inequality

u(t) ≤ u0 +
∫ t

0

p(s)u(s) ds +
∑

0≤tk<t

βku(g(tk))

where u0 = u(0), βk ≥ 0 for k = 0, 1, . . . , p(t) ∈ C([0,∞), [0,∞)).
Then the inequality

u(t) ≤ u0

∏

0≤tk<t

(
1 + βke

∫ gk

0
p(s) ds

)
e

∫ t

0
p(s) ds(1)

holds for t ∈ [0,∞).

P r o o f: Let t ∈ [t0, t1). Since 0 ≤ g0 ≤ t0, then g0 = 0. From condition 2 of Theorem 1
it follows that the inequality

u(t) ≤ u0 +
∫ t

0

p(s)u(s) ds + β0u(g(t0)) = u0(1 + β0) +
∫ t

0

p(s)u(s) ds(2)

holds.
By the inequality of Gronwall-Bellman and the inequality (2) the following inequlity

is fulfilled
u(t) ≤ u0(1 + β0)e

∫ t

0
p(s) ds

.

The last inequality shows the validity of (1) for t ∈ [t0, t1).
Suppose that the inequality (1) is satisfied for t ∈ [tk−1, tk), k = 0, 1, . . . , l. We shall

prove that the inequality (1) is fulfilled for t ∈ [tl, tl+1).
From condition 2 of Theorem 1 it follows that the function u(t) satisfies the inequality

u(t) ≤ u0 +
∫ t

0

p(s)u(s) ds +
l∑

i=0

βiu(gi)

= u0 +
l−1∑

i=0

∫ ti+1

ti

p(s)u(s) ds +
∫ t

tl

p(s)u(s) ds +
l∑

i=0

βiu(gi) .

By the continuity of the function u(t) at the points tk, k = 0, 1, . . . , l and the induction
assumption we obtain

u(t) ≤ u0 +
l−1∑

i=0

∫ ti+1

ti

p(s)u0

i∏

j=0

(
1 + βje

∫ gj

0
p(s) ds

)
e

∫ s

0
p(τ) dτ

ds

+
∫ t

tl

p(s)u(s) ds +
l∑

i=0

βiu0

i−1∏

j=0

(
1 + βje

∫ gj

0
p(s) ds

)
e

∫ gi

0
p(s) ds

= u0

[
1 +

l−1∑

i=0

i∏

j=0

(
1 + βje

∫ gj

0
p(s) ds

)(
e

∫ ti+1
0

p(s) ds − e

∫ ti

0
p(s) ds

)

+
l∑

i=0

i−1∏

j=0

βi

(
1 + βje

∫ gj

0
p(s) ds

)
e

∫ gi

0
p(s) ds

]
+

∫ t

tl

p(s)u(s) ds .
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From the last inequality the following inequality holds

u(t) ≤ u0

l∏

i=0

(
1 + βie

∫ gi

0
p(s) ds

)
e

∫ tl

0
p(s) ds +

∫ t

tl

p(s)u(s) ds .(3)

By the inequality of Gronwall-Bellman and the inequality (3) the next inequality is
fulfilled

u(t) ≤ u0

l∏

i=0

(
1 + βie

∫ gi

0
p(s) ds

)
e

∫ tl

0
p(s) ds

e

∫ t

tl
p(s) ds

= u0

l∏

i=0

(
1 + βie

∫ gi

0
p(s) ds

)
e

∫ t

0
p(s) ds

.

Therefore the inequality (1) is satisfied for t ∈ [tl, tl+1).
By induction of the intervals [tk, tk+1), k = 0, 1, . . . , we have obtained the validity

of the inequality (1) for t ∈ [0,∞).
¤

From Theorem 1 we obtain the following results:

Corollary 1 . Let the conditions of Theorem 1 hold where u0 = 0. Then u(t) = 0.

¤
Corollary 2 . Let the following conditions be fulfilled:

1. The function g(t) : [0,∞) → [0,∞) is a step one such that 0 ≤ gk ≤ tk for
t ∈ [tk, tk+1), k = 0, 1, . . . .

2. M and N are positive constants.
3. The function u(t) ∈ C([0,∞), [0,∞)) satisfies the inequality

u(t) ≤ u0 +
∫ t

0

Mu(s) ds + N
∑

0≤tk<t

4tku(g(tk))

where u0 = u(0),4tk = tk+1 − tk for k = 0, 1, . . . , for t ∈ [0,∞).
Then the inequality

u(t) ≤ u0

∏

0≤tk<t

(
1 + N4tkeMgk

)
eMt(4)

holds for t ∈ [0,∞).

P r o o f: From Theorem 1 and setting p(t) = M,βk = N4tk, k = 0, 1, . . . for t ∈ [0,∞)
we get

u(t) ≤ u0

∏

0≤tk<t

(
1 + N4tke

∫ gk

0
M ds

)
e

∫ t

0
M ds

= u0

∏

0≤tk<t

(
1 + N4tk(eMgk − 1)

)
(eMt − 1)

≤ u0

∏

0≤tk<t

(
1 + N4tkeMgk

)
eMt.

¤
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3. Applications
Consider the initial value problem for the differential equation with a step function (IVP)

x′ = f(x(t), x(g(t))) for t ∈ J,(5)
x(0) = c0(6)

where x ∈ R, f : R × R → R, J ⊆ [0,∞), c0 is a constant, g(t) : J → J is a step
function.

We denote by PC1(J,R) the set of all functions u ∈ C(J,R) for which the derivative
u′(t) exists and it is piecewise continuous in J with points of discontinuity of first kind
at the points tk, k = 1, 2 . . ., u′(tk) = u′(tk + 0).

Definition 2 . The function x(t) is a solution of the IVP (5),(6) in the interval J ⊆
[0,∞) if the following conditions are fulfilled:

1. x(t) ∈ PC1(J,R).
2. The function x(t) turns the equalities (5),(6) into identities for t ∈ J .

Definition 3 . The function v(t) ∈ PC1(J,R) is called a lower (upper) solution of the
IVP (5), (6)in the interval J ⊆ [0,∞) if

v′(t) ≤ (≥)f(v(t)), v(g(t))), v(0) ≤ (≥)c0.

Consider the initial value problem for the linear differential equation

x′(t) = a(t)x(t) + b(g(t))x(g(t)) for t ∈ [0,∞), x(0) = c0(7)

where g(t) : [0,∞) → [0,∞) is a step function, a(t), b(t) : [0,∞) → R, c0 is a constant.

Theorem 2 . Let the following conditions be satisfied:
1. The function g(t) : [0,∞) → [0,∞) is a step one such that 0 ≤ gk ≤ tk for

t ∈ [tk, tk+1), k = 0, 1, . . . .
2. The functions a(t), b(t) ∈ C([0,∞),R).
Then the IVP (7) has a unique solution for t ∈ [0,∞).

P r o o f: Let t ∈ [t0, t1). Consider the IVP

x′(t) = a(t)x(t) + b0s0, x(0) = c0(8)

where s0 = x(g0) = x(0) = c0, b0 = b(g0).

We denote I(r, t) =
∫ t

r

a(τ) dτ.

The solution of the IVP (8) exists for t ≥ 0 and satisfies the equality

x0(t) = c0e
I(0,t)(1 + b0

∫ t

0

e−I(0,τ) dτ) .
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Let t ∈ [t1, t2). Consider the IVP

x′(t) = a(t)x(t) + b1s1, x(t1) = c1(9)

where s1 = x(g1) = x0(g1), c1 = x0(t1), b1 = b(g1).
The solution of the IVP (9) exists for t ≥ t1 and satisfies the equality

x1(t) = eI(t1,t)
(
x0(t1) + b1x0(g1)

∫ t

t1

e−I(t1,τ) dτ
)

.

Let t ∈ [t2, t3). Consider the IVP

x′(t) = ax(t) + bs2, x(t2) = c2(10)

where s2 = x(g2), c2 = x1(t2). Since g2 ≤ t2, then s2 = xm(g2) where

m =
{

0 for g2 ∈ [0, t1]
1 for g2 ∈ (t1, t2] .

The solution of the IVP (10) exists for t ≥ t2 and satisfies the equality

x2(t) = eI(t2,t)
(
x1(t2) + b2xm(g2)

∫ t

t2

e−I(t2,τ) dτ
)

.

With the help of the solution xk−1(t) in the interval [tk−1, tk) and the steps method,
we construct the function xk(t) as a solution of the following IVP

x′(t) = a(t)x(t) + bksk, x(tk) = ck for t ∈ [tk, tk+1)

where sk = xk−i(gk), ck = xk−1(tk) for k = 1, 2, . . . and some integer i ≤ k.
Therefore

xk(t) = eI(tk,t)
(
xk−1(tk) + bkxk−i(gk)

∫ t

tk

e−I(tk,τ) dτ
)

.

Define the function

x(t) =





x0(t) for t ∈ [0, t1)
x1(t) for t ∈ [t1, t2)

. . .
xk(t) for t ∈ [tk, tk+1]

. . . .

The function x(t) is a solution of the IVP (7) in [0,∞).
We shall prove the uniqueness of the solution of the IVP (7). Suppose that x1(t),

x2(t) ∈ PC1([0,∞),R) are two different solutions of the IVP (7). We set the function
ϕ = x1(t)− x2(t) and consider its absolute value

|ϕ(t)| =
∣∣∣c0 +

∫ t

0

a(s)x1(s) ds +
∫ t

0

b(g(s))x1(g(s)) ds− c0 −
∫ t

0

a(s)x2(s) ds

−
∫ t

0

b(g(s))x2(g(s)) ds
∣∣∣ ≤

∫ t

0

|a(s)| |ϕ(s)| ds +
∑

0≤tk<t

|b(gk)| |ϕ(gk)|4tk .
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By Corollary 1 and the last inequality we obtain ϕ(t) = 0, i.e. x1(t) = x2(t).
¤

Theorem 3 . Let the following conditions be satisfied:
1. T, M, N are positive constants such that tp < T < tp+1, p ∈ N ∪ {0} and (M +

N)T ≤ 1.
2. The function g(t) : [0, T ] → [0, T ] is a step one such that 0 ≤ gk ≤ tk for

t ∈ [tk, tk+1), k = 0, 1, . . . , p.
3. The function f ∈ C(R2

,R) satisfies the condition

|f(x1, y1)− f(x2, y2)| ≤ M |x1 − x2|+ N |y1 − y2| .

4. The functions v(t), w(t) ∈ PC1([0, T ],R) are lower and upper solutions of the IVP
(5),(6) and v(t) ≤ w(t) for t ∈ [0, T ].

Then the IVP (5), (6) has a unique solution for t ∈ [0, T ].

P r o o f: We note that conditions 1 and 4 of Theorem 3 are used to be proved the
existence of the solution of the IVP (5), (6) by the monotone-iterative technique of
Lakshmikantham in [4]. Here we shall prove only the uniqueness of the IVP (5), (6).

Suppose that x1(t), x2(t) ∈ PC1([0, T ],R) are two different solutions of the IVP (5),
(6). We set the function ϕ = x1(t)− x2(t) and consider its absolute value

|ϕ(t)| =
∣∣∣c0 +

∫ t

0

f(x1(s), x1(g(s))) ds− c0 −
∫ t

0

f(x2(s), x2(g(s))) ds
∣∣∣

≤
∫ t

0

|f(x1(s), x1(g(s)))− f(x2(s), x2(g(s)))| ds .

From condition 3 of Theorem 3 the following inequality is fulfilled

|ϕ(t)| ≤
∫ t

0

M |ϕ(s)| ds + N
∑

0≤tk<t

|ϕ(gk)|4tk(11)

where 4tk = tk+1 − tk, k = 0, 1, . . . , p.
By Corollary 2 and the inequality (11) it follows that ϕ(t) = 0, i.e. x1(t) = x2(t).

Therefore the assumption is not true.
¤

Theorem 4 . Let the conditions of Theorem 3 hold. Then the solutions of the differential
equation (5) continuously depend on the initial condition for t ∈ [0, T ].

P r o o f: Let ε > 0 be a fixed number.
Consider the differential equation (5) with an initial condition

x(0) = c1(12)

and

x(0) = c2(13)
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Let x1(t), x2(t) ∈ PC1([0, T ],R) be solutions of the IVP (5), (12) and the IVP (5),
(13) respectively. Then the following equalities hold for t ∈ [0, T ]

x1(t) = c1 +
∫ t

0

f(x1(s), x1(g(s))) ds

x2(t) = c2 +
∫ t

0

f(x2(s), x2(g(s))) ds .

Set the function ϕ(t) = x1(t)−x2(t) and consider its absolute value. From conditions
1, 3 of Theorem 4 we get the inequality

|ϕ(t)| ≤ |ϕ(0)|+
∫ t

0

M |ϕ(s)| ds + N
∑

0≤tk<t

|ϕ(gk)|4tk(14)

where 4tk = tk+1 − tk, k = 0, 1, . . . , p.

Choose δ such that δ < ε
( p∑

k=0

(1 + N4tkeMgk)eMT
)−1

.

If |c1 − c2| = |ϕ(0)| < δ for t ∈ [0, T ], then from the inequality (14) and Corollary 2
the following inequality holds

|ϕ(t)| < δ
∏

0≤tk<t

(
1 + N4tkeMgk

)
eMt ≤ δ

∏

0≤tk<T

(
1 + N4tkeMgk

)
eMT < ε

for t ∈ [0, T ].
Therefore the solutions of the differential equation (5) continuously depend on the

initial condition for t ∈ [0, T ].
¤
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