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Abstract. An integro-summation inequality of Gronwall-Bellman type is proved and
applied for studying some qualitative properties of the solutions of differential equations
with a step function.
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1. Introduction

One of the most powerful apparatuses in the quantative theory of differential equations
is the integral inequalities of Gronwall-Bellman type [1], [2]. They are greatly used in
investigating diverse properties of the solutions of the differential equations such as
uniqueness, continuous dependence, stability, boundedness, etc.

In the paper we shall prove a linear integro-summation inequality of Gronwall-
Bellman type and shall use this inequality for investigating some qualitative properties
of the solutions of differential equations with a piecewise constant function (DEPCF).
Some properties of the solutions of DEPCF are studied in [3], [4]. We note that research
in this direction is motivated by the fact that DEPCF represent a hybrid of continuous
and discrete dynamical systems and combine the properties of both differential and
difference equations.

2. Main results

Let the points ¢, € R,k =0,1,... be fixed such that tqg = 0,%; < tht1, klim tr = oo.
— 00

Definition 1 . The function g(t) : [0,00) — R is called a step function if g(t) = gi for
ty <t < tiy1 where g, = const,k=0,1,....

Theorem 1 . Let the following conditions be satisfied:
1. The function g(t) : [0,00) — [0,00) is a step one such that 0 < g, < ti for
t € [th,thy1), k=0,1,....
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2. The function u(t) € C(]0,0),[0,00)) satisfies the inequality

ult) < up + / p(s)u(s)ds + 3 Brulo(te)

0<t,<t

where ug = u(0), B >0 for k=0,1,..., p(t) € C([0,00),[0,0)).
Then the inequality

(1) u(t) < wug H (1 + ﬁkef p(s) ds) f p(s)ds
0<tr<t
holds fort € [0, 00).

Proof: Lett € [to,t1). Since 0 < gg < tg, then go = 0. From condition 2 of Theorem 1
it follows that the inequality

(2)  u() <uo+ /0 p(s)u(s) ds + Bou(g(to)) = uo(1 + fBo) + /O p(s)u(s) ds

holds.
By the inequality of Gronwall-Bellman and the inequality (2) the following inequlity
is fulfilled

u(t) < uo(l _i_ﬁo)efotp(s)ds.

The last inequality shows the validity of (1) for ¢t € [to,t1).

Suppose that the inequality (1) is satisfied for t € [tx—_1,tx),k = 0,1,...,1. We shall
prove that the inequality (1) is fulfilled for ¢ € [t;, t;41).

From condition 2 of Theorem 1 it follows that the function u(t) satisfies the inequality

t l
() < ot / plsJuls)ds-+ 3 fuula)
-1

tit1 t l
=0+ 3 [ euoras s [ puts)as + 3 dutan

i=0 1t

By the continuity of the function u(t) at the points tx, k = 0,1, ..., and the induction
assumption we obtain

Ut < UO+Z/L+1 UOH<1+ﬂj€fjP(S)ds)ej:P(‘r)deS
l i—1 ‘ »
+ /tp(s)u(s) ds + Z Biug H (1 + gjefogj p(s) dS)eng” p(s) ds
=0

K i=0
[1 + ;]1110(1 + B e p(s) ds) ( f0i+1 p(s)ds efoti o(s) ds)
+ZH@(1 + B; ey pts >ds) N ip(sus} +/ttp(s)u(s) e
i=0 j=0 L
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From the last inequality the following inequality holds

l ) t t
(3) u(t) <u 1+ ﬁiefogl p(s) ds efo p(s)ds 4 (s)u(s)ds .
0 E)( ) / p

ty

By the inequality of Gronwall-Bellman and the inequality (3) the next inequality is
fulfilled

t

! . t
u(t) < wo H (1 + @fffogz o ds)efo 2(e) dseftl pls) ds
i=0

1 . .
=g H(l + ﬁief; p(s) ds)efo pls)ds
i=0

Therefore the inequality (1) is satisfied for ¢ € [t;, t;11).
By induction of the intervals [tg,tx+1),k = 0,1,... , we have obtained the validity
of the inequality (1) for ¢ € [0, c0).
O
From Theorem 1 we obtain the following results:

Corollary 1 . Let the conditions of Theorem 1 hold where ug = 0. Then u(t) = 0.
O

Corollary 2 . Let the following conditions be fulfilled:

1. The function g(t) : [0,00) — [0,00) is a step one such that 0 < gy < ty for
te [tk,tk_;,_l),k' =0,1,....

2. M and N are positive constants.

3. The function u(t) € C(]0,0),[0,00)) satisfies the inequality

u(t) <wug + /Ot Mu(s)ds+ N Z ANtru(g(tr))

0<trp<t
where ug = u(0), Aty = tgy1 — tg for k=0,1,... , fort € [0,00).
Then the inequality
4) u(t) < ug H (1 + NAtkeMg’“)eMt

0<t, <t
holds for t € [0, c0).

P r oo f: From Theorem 1 and setting p(t) = M, B, = NAt,, k=0,1,... for t € [0, 00)
we get

u(t) < g H (1—|—NAtkefongds)efo M ds

0<tp<t
—u [] (1 + NAt(eMor — 1)) (Mt — 1)
0<tp<t
< ug H (1 + NAtkeMg’“)eMt.
0<tp<t
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3. Applications

Consider the initial value problem for the differential equation with a step function (IVP)
(5) ' = f(z(t),z(g(t))) for teJ,
(6) z(0) = co

where r € R, f: RxR — R, J C [0,00), ¢o is a constant, g(t) : J — J is a step
function.

We denote by PC*(J,IR) the set of all functions u € C(J, R) for which the derivative
u’(t) exists and it is piecewise continuous in J with points of discontinuity of first kind
at the points tg, k=1,2..., v/ (t) = v/ (tx + 0).
Definition 2 . The function z(t) is a solution of the IVP (5),(6) in the interval J C
[0,00) if the following conditions are fulfilled:

1. z(t) € PC'(J,R).

2. The function x(t) turns the equalities (5),(6) into identities fort € J.

Definition 3 . The function v(t) € PC*(J, R) is called a lower (upper) solution of the
IVP (5), (6)in the interval J C [0, 00) if

v'(t) < (2)f(v(t)),v(9(1)), v(0) < (=)co.
Consider the initial value problem for the linear differential equation
(7) a'(t) = a(t)x(t) + b(g(t))z(g(t)) for t € [0,00), x(0) = co
where g(t) : [0,00) — [0,00) is a step function, a(t),b(t) : [0,00) — R, ¢q is a constant.
Theorem 2 . Let the following conditions be satisfied:
1. The function g(t) : [0,00) — [0,00) is a step one such that 0 < g, < ti for
te [tk,karl),k =0,1,....

2. The functions a(t),b(t) € C([0,0), R).
Then the IVP (7) has a unique solution for t € [0,00).

Proof: Lett € [ty,t1). Consider the IVP
(8) 2’ (t) = a(t)z(t) + boso, =(0) = co
where so = 2(go) = z(0) = co, bo = b(go)-

We denote I(r,t) = / a(t)dr.
The solution of the I\;P (8) exists for ¢t > 0 and satisfies the equality

t
zo(t) = coe! OV (1 + bo/ e 1O ary
0
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Let t € [t1,t2). Consider the IVP
9) a'(t) = a(t)x(t) + bis1, @(t1) =

where s; = 2(g1) = zo(91), c1 = zo(t1), b1 = b(g1).
The solution of the IVP (9) exists for t > ¢; and satisfies the equality

t
i (t) = e th) (xo(tl) + 51560(91)/ et dT) .

ty
Let t € [ta,t3). Consider the IVP

(10) Z'(t) = ax(t) + bsa, z(t2) = c2
where s = 2(g2), co = x1(t2). Since gs < to, then sy = x,,(g2) where
_ { 0 for g2 €[0,t]
| lfor  go € (t1,t2] .
The solution of the IVP (10) exists for ¢ > t5 and satisfies the equality
To(t) = el (t2t) (l‘l(tg) + boxm (g2) /t e~ 1(t27) dT) .
to

With the help of the solution x;_1(¢) in the interval [t;_1,t;) and the steps method,
we construct the function x(t) as a solution of the following IVP

2'(t) = a(t)x(t) + bgpsk, x(tg) = cp for t € [ty tri1)

where s, = xp—;(gr), ck = xx—1(tx) for k =1,2,... and some integer i < k.
Therefore

t
:L'k(t) = el(tk’t) (xkfl(tk) —+ bkl'kfl(gk)/ eiI(tk’T) dT) .

tr
Define the function
$0(t) for t e [O,tl)
.’El(t) for te [tl,tg)
z(t) =

xp(t) for  t € [tr, trt1]

The function z(t) is a solution of the IVP (7) in [0, c0).

We shall prove the uniqueness of the solution of the IVP (7). Suppose that z1(t),
x2(t) € PCY(]0,00),R) are two different solutions of the IVP (7). We set the function
© = x1(t) — z2(t) and consider its absolute value

PO = Jat [ ans) s+ [ bo@)ela)ds == [ ats)rats) is
- [ Ha)eata s < [ o) el ds+ 30 Ban)l lelalat

0<tp<t
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By Corollary 1 and the last inequality we obtain ¢(t) = 0, i.e. x1(t) = z2(t).
U

Theorem 3 . Let the following conditions be satisfied:

1. T,M, N are positive constants such that t, < T < t,11,p € NU{0} and (M +
N)T < 1.

2. The function g(t) : [0,T] — [0,T] is a step one such that 0 < g < ty for
t € [th,tht1), k=0,1,...,p.

3. The function f € C(R2,R) satisfies the condition

|f(z1,91) — f(z2,92)| < M|z1 — 22| + N|y1 — y2 .

4. The functions v(t),w(t) € PC([0,T],R) are lower and upper solutions of the IVP
(5),(6) and v(t) < w(t) fort e [0,T].
Then the IVP (5), (6) has a unique solution for t € [0,T].

P r o o f: We note that conditions 1 and 4 of Theorem 3 are used to be proved the
existence of the solution of the IVP (5), (6) by the monotone-iterative technique of
Lakshmikantham in [4]. Here we shall prove only the uniqueness of the IVP (5), (6).

Suppose that z1(t), z2(t) € PC([0,T],R) are two different solutions of the IVP (5),
(6). We set the function ¢ = z1(t) — z2(t) and consider its absolute value

PO = Jo+ [ Tl ds—a= [ fa)mloo)d
< [ 1 @(s)01(9(5) — faa(s).aalo(s))] s
0

From condition 3 of Theorem 3 the following inequality is fulfilled

(1) 01 < [ Miplds+N 3 felan)lat

0<tp<t

where Atk = tk+1 — tk,k‘ = 0, 1, BRI N
By Corollary 2 and the inequality (11) it follows that ¢(t) = 0, i.e. z1(t) = z2(t).

Therefore the assumption is not true.
d

Theorem 4 . Let the conditions of Theorem 3 hold. Then the solutions of the differential
equation (5) continuously depend on the initial condition for t € [0,T].

Proof: Let € >0 be a fixed number.
Consider the differential equation (5) with an initial condition

(12) z(0) = ¢
and
(13) :E(O) = C2
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Let x1(t),z2(t) € PC*([0,T],R) be solutions of the IVP (5), (12) and the IVP (5),
(13) respectively. Then the following equalities hold for ¢ € [0, T]

m@=q+éﬂm@ww@»%

ra(t) = e+ [ Flaa(s)mala9)ds

Set the function ¢(t) = z1(t) —x2(t) and consider its absolute value. From conditions
1, 3 of Theorem 4 we get the inequality

¢
(14) ()] < [0 (0)] +/ Mlp(s)lds +N Y |e(ge)| Ot
0 0<ty <t
where Aty = tpy1 —tg, k=0,1,...,p.
P —1
Choose § such that § < E(Z(l + NAtkeMg")eMT) .

k=0
If |e; — co| = |p(0)] < 8 for t € [0,T], then from the inequality (14) and Corollary 2
the following inequality holds

e <5 ] (1 n NAtkeMgk)er <5 ] (1 n NAtkeMgk)eMT <e
0<tp<t 0<tp<T

for t € [0, 7.
Therefore the solutions of the differential equation (5) continuously depend on the
initial condition for ¢ € [0, 7.

O
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