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Abstract

For some Lie algebras we study special identities which are of type provoked
by an approach of Formanek and Bergman for investigating matrix identities by
means of commutative algebra.

We consider the matrix algebra of fourth order with symplectic involution and
the Lie algebra of the skew-symmetric to the involution variables with a new mul-
tiplication Lie commutator. We investigate if there are Lie identites which are
polynomials of the considered type.

Estimations for the least possible degree of such identities lead to a general
conclusion. We prove that the considered polynomials are not Lie identities for
this special Lie algebra as an application of results obtained by the author for
matrix algebras with symplectic involution.

AMS Subject Classification: 16R50, 16R10

I. Introduction
The special Lie algebras play an important role in the theory of Lie algebras with

polynomial identities (PI-algebras) as seen from [1] and its good bibliography.
We recall some facts concerning them needed in the sequel.
An algebra L over a commutative ring R with identity is called special Lie algebra if

it is isomorphic to a subalgebra of a Lie algebra of type [A], where A is an associative
PI-algebra over R and its multiplication · defines the multiplication in [A] by the Lie
commutator [a, b] = a · b− b · a.

If R is a field every finite dimensional Lie algebra L is special. Due to the Ado-
Iwasawa theorem [1, p.249] L is imbedded in a Lie algebra of type [EndRV ], where V
is a finitely dimensional vector space. As a finite associative algebra satisfies a standard
identity of appropriate degree the Lie algebra L is special. In [1] the following is proved:

Proposition 1 [1, p.254] Let L be a special Lie algebra. Then L satisfies a nontrivial
identity as a Lie algebra.

The present paper gives details on the nature of such identities. We investigate
special types of identities for one special Lie algebra - the Lie algebra so(4,K, ∗) of the
skew-symmetric to the symplectic involution ∗ variables of the matrix algebra of fourth
order M4(K, ∗), where K is a field of characteristic 0 and ∗ is the symplectic involution
in M4(K) defined by (

A B
C D

)∗
=

(
Dt −Bt

−Ct At

)
,
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where A,B, C,D are 2× 2 matrices and t is the usual transpose.
These identities are polynomials in skew-symmetric variables of the following type

considered for the first time by Formanek [4] and Bergman [2] and later on in a series
of papers by the author and Drensky [3, 7, 5, 6].

To a homogeneous polynomial in commuting variables

g(t1, . . . , tn+1) =
∑

αpt
p1
1 . . . t

pn+1
n+1 ∈ K[t1, . . . , tn+1](1)

we relate a polynomial v(g) from the free associative algebra
K〈x, y1, . . . , yn〉

v(g) = v(g)(x, y1, . . . , yn) =
∑

αpx
p1y1 . . . xpnynxpn+1 .(2)

Any homogeneous and multilinear in y1, . . . , yn polynomial f(x, y1, . . . , yn) can be
written as

f(x, y1, . . . , yn) =
∑

i=(i1,...,in)∈Sym(n)

v(gi)(x, yi1 , . . . , yin
),(3)

where gi ∈ K[t1, . . . , tn+1].
A detailed survey on polynomial identities is [8]. For ∗-polynomials in skew-symmetric

variables one could see [5].
Bergman shows in [2] that no polynomials of type (2) could be identities for Mn(K).

An easy observation affirms the same for the considered polynomials in skew-symmetric
variables for the algebra M2n(K, ∗) as well. That is why we consider polynomials of
type (3) calling them for simplicity Bergman polynomials.

We are interested in their minimal degree for the algebra so(4,K, ∗), which could be
suggested from the following statement.

Proposition 2 [7, Theorem 1] Let a polynomial f(x, y1, . . . , yn) of type (3) be a ∗-
identity in skew-symmetric variables for M2n(K, ∗). Then

∏

1 ≤ p < q ≤ n + 1
(p, q) 6= (1, n + 1)

(t2p − t2q)(t1 − tn+1)

divides the polynomials gi from (1) for all i = (i1, . . . , in).

Thus this degree could be 7. But it is not so. The way of proving it works in the
general case as well. In fact we diminish the possibilities for the Lie identities in the
considered special algebra and prove the following statement.

Theorem 1 No Bergman polynomials are Lie identities for the Lie algebra so(4, K, ∗).
Before proving the theorem we show the connection between the polynomials from

the free Lie algebra L{X} and the corresponding commutative polynomials.
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The basis of L{X} on a countable set X is studied in [1, p.68, 2.3]. We use the Hall ba-
sis of L{X} [1, p.73, 2.3.7], which means that for X = {x, y2, y1} we consider the follow-
ing elements (of a given degree k+2): [yi1 , x, . . . , x︸ ︷︷ ︸

k

, yi2 ] and [[yi1 , x, . . . , x︸ ︷︷ ︸
l

], [yi2 , x, . . . , x︸ ︷︷ ︸
k−l

]],

where (i1, i2) is any permutation on {1, 2} and l = 1, . . . , k − 1.
We point that the commutators in the sequel are left normed. We write them as

elements of the free associative algebra K〈X〉 and thus the commutative polynomials
are uniquely defined as seen by the following examples: For

f = [y1, x, y2] = y1xy2 − xy1y2 − y2y1x + y2xy1

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1)

we have g1 = t2 − t1 and g2 = −(t3 − t2). For

f = [[y1, x], [y2, x, x]] = y1xy2x
2 − 2y1x

2y2x + y1x
3y2

− xy1y2x
2 + 2xy1xy2x− xy1x

2y2 − y2x
2y1x + y2x

3y1

+ 2xy2xy1x− 2xy2x
2y1 − x2y2y1x + x2y2xy1

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1)

one gets g1 = (t2 − t1)(t3 − t2)2 and g2 = −(t2 − t1)2(t3 − t2).
Proof of Theorem 1:
Let l denote the degree of the Bergman polynomial f . We write its explicit form due

to the parity of l.
(i) Let l = 2k + 2. Then

f = A[y1, x, . . . , x︸ ︷︷ ︸
l−2

, y2] + B[y2, x, . . . , x︸ ︷︷ ︸
l−2

, y1]

+ a1[[y1, x], [y2, x, . . . , x︸ ︷︷ ︸
l−3

]] + a2[[y1, x, x], [y2, x, . . . , x︸ ︷︷ ︸
l−4

]]

+ · · ·+ ak[[y1, x, . . . , x︸ ︷︷ ︸
k

], [y2, x, . . . , x︸ ︷︷ ︸
k

]]

+ b1[[y2, x], [y1, x, . . . , x︸ ︷︷ ︸
l−3

]] + b2[[y2, x, x], [y1, x, . . . , x︸ ︷︷ ︸
l−4

]]

+ · · ·+ bk−1[[y2, x, . . . , x︸ ︷︷ ︸
k−1

], [y1, x, . . . , x︸ ︷︷ ︸
k+1

]]

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1) = f1 + f2.

The polynomial g1 corresponding to f1 has the form

g1 = A(t2 − t1)l−2 −B(t3 − t2)l−2

+ a1(t2 − t1)(t3 − t2)l−3 + a2(t2 − t1)2(t3 − t2)l−4

+ · · ·+ ak(t2 − t1)k(t3 − t2)k

− b1(t2 − t1)l−3(t3 − t2)− b2(t2 − t1)l−4(t3 − t2)2

− · · · − bk−1(t2 − t1)k+1(t3 − t2)k−1.
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According to Proposition 2 the polynomials t1 − t2, t2 − t3 and t1 + t2 are factors
of g1. Thus f1(t1 = t2) = 0 leads to B = 0 and f1(t2 = t3) = 0 gives A = 0. Then we
consider the polynomial f1(t1 = −t2) = 0. Its explicit form is

2a1t2(t3 − t2)l−3 + 4a2t
2
2(t3 − t2)l−4 + · · ·

+ 2kaktk2(t3 − t2)k − 2l−3b1t
l−3
2 (t3 − t2)

− 2l−4b2t
l−4
2 (t3 − t2)2 − · · ·

− 2k+1bk−1t
k+1
2 (t3 − t2)k−1 = 0.

Dividing it by 2t2(t3 − t2) we get

a1(t3 − t2)l−4 + 2a2t2(t3 − t2)l−5 + · · ·
+ 2k−1aktk−1

2 (t3 − t2)k−1 − 2l−4b1t
l−4
2 − 2l−5b2t

l−5
2 (t3 − t2)

− · · · − 2kbk−1t
k
2(t3 − t2)k−2 = 0.

Equating to zero the coefficients of tl−4
3 , t2t

l−5
3 ,. . . , tk−1

2 tk−1
3 we get a1 = 0, a2 = 0,

. . . , ak = 0, respectively. Then we do the same for the coefficients of tk2tk−2
3 , tk+1

2 tk−3
3 ,

. . . , tl−5
2 t3, tl−4

2 and get bk−1 = 0, bk−2 = 0, . . . , b2 = 0, b1 = 0, respectively.
(ii) Let l = 2k + 3. Then

f = A[y1, x, . . . , x︸ ︷︷ ︸
l−2

, y2] + B[y2, x, . . . , x︸ ︷︷ ︸
l−2

, y1]

+ a1[[y1, x], [y2, x, . . . , x︸ ︷︷ ︸
l−3

]] + a2[[y1, x, x], [y2, x, . . . , x︸ ︷︷ ︸
l−4

]]

+ · · ·+ ak[[y1, x, . . . , x︸ ︷︷ ︸
k

], [y2, x, . . . , x︸ ︷︷ ︸
k+1

]]

+ b1[[y2, x], [y1, x, . . . , x︸ ︷︷ ︸
l−3

]] + b2[[y2, x, x], [y1, x, . . . , x︸ ︷︷ ︸
l−4

]]

+ · · ·+ bk[[y2, x, . . . , x︸ ︷︷ ︸
k

], [y1, x, . . . , x︸ ︷︷ ︸
k+1

]]

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1) = f1 + f2.

The polynomial g1 has the form

g1 = A(t2 − t1)l−2 −B(t3 − t2)l−2

+ a1(t2 − t1)(t3 − t2)l−3 + a2(t2 − t1)2(t3 − t2)l−4

+ · · ·+ ak(t2 − t1)k(t3 − t2)k+1

− b1(t2 − t1)l−3(t3 − t2)− b2(t2 − t1)l−4(t3 − t2)2

− · · · − bk(t2 − t1)k+1(t3 − t2)k.

As in (i) f1(t1 = t2) = 0 leads to B = 0 and f1(t2 = t3) = 0 gives A = 0. Then we
consider the polynomial f1(t1 = −t2) = 0. Its explicit form is

2a1t2(t3 − t2)l−3 + 4a2t
2
2(t3 − t2)l−4 + · · ·
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+ 2kaktk2(t3 − t2)k+1 − 2l−3b1t
l−3
2 (t3 − t2)

− 2l−4b2t
l−4
2 (t3 − t2)2 − · · · − 2k+1bktk+1

2 (t3 − t2)k = 0.

Dividing by 2t2(t3 − t2) and equating to zero the coefficients of tl−4
3 , t2t

l−5
3 ,. . . ,

tk−1
2 tk3 we get a1 = 0, a2 = 0, . . . , ak = 0, respectively. Then the same procedure for

the coefficients of tk2tk−1
3 , tk+1

2 tk−2
3 , . . . , tl−5

2 t3, tl−4
2 gives bk = 0, bk−1 = 0, . . . , b2 = 0,

b1 = 0, respectively.
We stress on the efficiency of the approach considered by Bergman and Formanek.

Once getting necessary conditions on the type of the possible identities (Proposition 2)
one works only in the commutative algebra without concerning skew-symmetric variables
at all.

Theorem 1 could be formulated in another way too.

Theorem 2 For the special Lie algebra [M4(K, ∗)] no Bergman polynomials are Lie
identities in skew-symmetric variables.

A statement concerning the minimal degree of the Bergman polynomials as Lie iden-
tities for so(6,K, ∗) could be formulated as well. Its proof follows the same pattern
however the technical difficulties are much more.
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