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A shape of triangle is a complex number which is an equivalence class of triangles
with respect to the equivalence relation a direct similarity. In this paper we apply shapes
for examining equilateral and right triangles in several examples.
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It is well-knoun that the complex numbers can be used for studing of Euclidean plane.
There are books which consider applications of complex cross-ratio in plane geometry
(for example see [3] and [8]). A complex analytic formalism based on complex cross-ratio
is developed by June Lester in her triangle series ([4], [5] and [6]). The concept of shape
of triangle is a very useful tool in this formalism. Some applications of shapes of triangles
are given in [1] and [2]. In the paper, we apply shapes for establishment of the type of
triangle. Note that another interpretation of the shape of triangle is introduced by H.
Sato in [7].

In according to [4], if a, b, c are three noncollinear points in the Gaussian plane, the
number

4abc =
a− c
a− b

∈ C \R
is called a shape of triangle4abc. The ratio of the side lengths |a−c| and |a−b| is equal
to |4abc|. A positive oriented equilateral triangle4abc has a shape4abc = ω = 1

2+i
√

3
2 .

Similarly, a negative oriented equilateral triangle4abc has a shape4abc = ω = 1
2−i

√
3

2 .
A triangle 4abc is rightangled at a if and only if its shape 4abc is pure imaginary. We
shall also apply the Second Shape Theorem and the angle-shape formula (see for details
[4]).

Proposition 1 Let 4abc be an isosceles and right triangle with a right angle at a. Let
L be a line passing through a and not intersecting the segment bc. If p, q are distinct
points on the line L such that bp and cq are perpendicular to L and if m is the midpoint
of the segment bc, then the triangle 4mqp is isosceles and right.
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Proof. The shape of 4abc is 4abc = i. From the similarity of the triangles 4qac and
4pba, it follows that 4qac = 4pba = λ, λ ∈ C \R. Since m is the midpoint of the
segment bc, [∞,m; c,b] = −1. Using the Second Shape Theorem from [4] we have

4mqp =
−i− 1+λ

1−λ
1+λ
1−λ i− 1

=
i( 1+λ

1−λ i− 1)
1+λ
1−λ i− 1

= i.

This means that 6 pmq = π : 2 and 4mqp is an isosceles with apex at m.

Proposition 2 On the sides ac and ab of 4abc, construct similar triangles 4qac and
4pba with the same orientation. Let m be the midpoint of the segment bc and let m,
q and p be distinct. Then 4mqp is similar to 4abc if and only if 4abc is isosceles
and right.

Proof. Let the shape of the triangle 4abc is 4, i.e. 4 = 4abc, 4 ∈ C \R. From the
similarity of the triangles4qac and4pba, it follows that4qac = 4pba = λ, λ ∈ C\R.
Using Second Shape Theorem from [4] and [∞,m; c,b] = −1, we obtain the shape of
the triangle 4mqp, i.e.

4mqp =
−4− 1+λ

1−λ
1+λ
1−λ4− 1

.

A necessary and sufficient condition for a similarity of the triangles 4mqp and 4abc
is 4mqp = 4abc = 4, i.e.

−4− 1+λ
1−λ

1+λ
1−λ4− 1

= 4.

The last equality is equivalent to the equality 42 + 1 = 0. Whence either 4 = i or
4 = −i and the proof is completed.

The advantage of the Second Shape Theorem is that it gives an equality for shapes of
five triangles. In the next three propositions, we establish equalities for shapes in some
other configurations of triangles. These equations can be consider as analogues of the
Second Shape Theorem. Moreover, we apply any obtained equality for configurations
with special triangles.
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Proposition 3 On the sides ac and ba of 4abc, construct triangles 4qac and 4rba
with shapes µ and ν, respectively. If the points m, n and p are the midpoints of the
segments aq, ar and cb, respectively, then 4pmn has a shape

(1) 4pmn =
1

1−ν +4abc

1 + µ
µ−14abc

.

Proof. Solve the equations 4qac = µ and 4rba = ν for q and r: q = c−µa
1−µ , r = a−νb

1−ν .
Then calculate
2(1− ν)(p− n) = (ν − 2)a + b + (1− ν)c = −(a− b)− (1− ν)(a− c) =
= −(a− b)[1 + (1− ν)4abc],
2(1− µ)(p−m) = (2µ− 1)a + (1− µ)b− µc = (µ− 1)(a− b) + µ(a− c) =
= (a− b)[µ− 1 + µ4abc].
By division we get

4pmn =
[1 + (1− ν)4abc](µ− 1)
(µ− 1 + µ4abc)(1− ν)

.

Corollary 3.1 On the sides ac and ba of 4abc, construct equilateral triangles 4qac
and 4rba with the same orientation. If the points m, n and p are midpoints of the
segments aq, ar and cb, respectively, then the triangle 4pmn is also equilateral.

Proof. From Proposition 3, we have that µ = ν = ω or µ = ν = ω. If µ = ν = ω

we obtain that 4pmn = 1+(1−ω)4abc

1−ω−ω4abc
. Then using the relations ωω = 1, ω + ω = 1 and

ω2 − ω + 1 = 0 we calculate

4pmn =
1 + ω4abc

ω − ω4abc
=
ω(ω + ω24abc)
ω − ω4abc

=
ω[ω + (ω − 1)4abc]

ω − ω4abc
=
ω(ω − ω4abc)
ω − ω4abc

= ω,

i.e. 4pmn is equilateral. The same conclusion hold if µ = ν = ω (replace ω by ω).

Corollary 3.2 On the sides ac and ba of 4abc construct similar triangles 4qac
and 4rba with corresponding vertices distinct. Let m, n and p be the midpoints of the
segments aq, ar and bc, respectively. Then 4pmn is similar to 4qac if and only if
both triangles 4qac and 4rba are equilateral.

314



Proof. Let the shape of the triangle 4qac is λ ∈ C \ R. From the similarity of the
triangles 4qac and 4rba, it follows that 4qac = 4rba = λ. From Proposition 3 we
have µ = ν = λ and

4pmn =
1 + (1− λ)4abc

1− λ− λ4abc
.

A necessary and sufficient condition for a similarity of the triangles 4pmn and 4qab
is 4pmn = 4qac = λ, i.e.

1 + (1− λ)4abc

1− λ− λ4abc
= λ.

From here, we obtain that λ2 − λ+ 1 = 0, i.e. either λ = ω or λ = ω.

Proposition 4 On the sides ac and ba of 4abc construct triangles 4qac and 4rba
with shapes µ and ν, respectively. If the points m and n are midpoints of the segments
bq and cr then 4anm has a shape

(2) 4anm =
1 + 1

1−µ4abc

− ν
1−ν +4abc

.

Proof. We have that 4qac = µ and 4rba = ν, i.e. q = c−µa
1−µ and r = a−νb

1−ν . Then
calculate
2(1− µ)(a−m) = (2− µ)a− (1− µ)b− c = (1− µ)(a− b) + a− c =
= (a− b)(1− µ+4abc),
2(1− ν)(a− n) = (1− 2ν)a + νb + (1− ν)c = −ν(a− b) + (1− ν)(a− c) =
= (a− b)[−ν + (1− ν)4abc].
Divide and rearrange to get

4anm =
(1− µ+4abc)(1− ν)

(−ν + (1− ν)4abc)(1− µ)
.

Corollary 4.1 On the sides ac and ba of 4abc, construct equilateral triangles 4qac
and 4rba with the same orientation. If the points m and n are midpoints on the
segments bq and cr, respectively, then 4anm is equilateral.
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Proof. We may assume that µ = ν = ω in Proposition 4. Then

4anm =
1− ω +4abc

−ω + (1− ω)4abc
=

ω +4abc

−ω + ω4abc
.

From the relations ω2 − ω + 1 = 0 and ω + ω = 1, it follows that ω2 = −ω. Hence,

4anm =
ω(ω2 + ω4abc)
−ω + ω4abc

= ω,

i.e. 4anm is equilateral.

Corollary 4.2 On the sides ac and ab of the triangle 4abc construct similar triangles
4acq and 4arb. Let m and n be the midpoint of the segments bq and cr, respectively.
Then the triangle 4anm is similar to the triangles 4acq and 4arb.

Proof. From the similarity of the triangles4acq and4arb, it follows that4acq = 4arb =
λ. Using Proposition 4 we have that µ = 4qac = 4′′acq = λ′′ and ν = 4rba = 4′arb = λ′.

Replacing, we obtain 4anm =
1+ 1

1−λ′′4abc

− λ′
1−λ′+4abc

. From λ′ = 1
1−λ , λ

′′ = 1 − 1
λ we find that

4anm = 1+λ4abc
1
λ +4abc

= λ. Consequently, the triangles 4anm, 4acq and 4arb are similar.

Proposition 5 Let 4oab, 4ocd and 4oef be triangles with shapes λ, µ and ν, re-
spectively. If m, n and p are midpoints of the segments bc, de and fa, respectively, then
the triangle 4pmn has a shape

(3) 4pmn =
4oea − µ4oec + ν − 1

(1− λ)4oea −4oec + ν
.

Proof. From λ = 4oab, µ = 4ocd, ν = 4oef we have that

o− b = λ(o− a),o− d = µ(o− c),o− f = ν(o− e).
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Sinse p = a+f
2 , m = b+c

2 , n = d+e
2 we obtain

4pmn =
p− n
p−m

=
a + f − d− e
a + f − b− c

=
(a− o) + (f − o)− (d− o)− (e− o)
(a− o) + (f − o)− (b− o)− (c− o)

=

=
(a− o) + (ν − 1)(e− o)− µ(c− o)
(1− λ)(a− o) + ν(e− o)− (c− o)

=
4oea − µ4oec + ν − 1

(1− λ)4oea −4oec + ν
.

Corollary 5.1 Let 4oab, 4ocd and 4oef be equilateral triangles with the same
orientation. If m, n and p are midpoints of the segments bc, de and fa, respectively,
then the triangle 4mnp is equilateral.

Proof. Replacing λ = µ = ν = ω in Proposition 5, we obtain that

4pmn =
4oea − ω4oec + ω − 1

(1− ω)4oea −4oec + ω
.

Using the relations ω2 − ω + 1 = 0, ωω = 1 and ω + ω = 1, we have that

4pmn =
ω(ω4oea −4oec + 1− ω)
ω4oea −4oec + 1− ω

= ω.

Corollary 5.2 Let 4oab, 4ocd and 4oef be similar triangles. Let m, n and p be
the midpoints of the segments bc, de and fa , respectively. Then the triangle 4pmn is
similar to the triangle 4oab if and only if 4oab, 4ocd and 4oef are equilateral.

Proof. From similarity of the triangles 4oab, 4ocd and 4oef , it follows that 4oab =
4ocd = 4oef . Hence, setting λ = µ = ν into the formula of Proposition 5 we have that

4pmn =
4oea − λ4oec + λ− 1

(1− λ)4oea −4oec + λ
=

4oea − 1− λ(4oec − 1)
4oea −4oec − λ(4oea − 1)

=

=
e− a− λ(e− c)
c− a− λ(e− a)

=
4ace − λ(4ace − 1)

1− λ4ace
.

A necessary and suficient condition for a similarity of the triangles 4pmn and 4oab is
4pmn = 4oab = λ, i.e.

4ace − λ(4ace − 1)
1− λ4ace

= λ,

wich from 4ace 6= 0 is equivalent to the equality λ2−λ+1 = 0. From here either λ = ω
or λ = ω and the proof is completed.

Corollary 5.3 Let 4oab, 4ocd and 4oef be similar triangles. Let m, n and p be
the midpoints of the segments bc, de and fa, respectively. Then, the triangle 4pmn is
similar to the triangle 4ace if and only if 4ace is equilateral.
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Proof. Using the proof of Corollary 5.2 we have that

4pmn =
4ace − λ(4ace − 1)

1− λ4ace
.

A necessary and sufficient condition for a similarity of the triangles 4pmn and 4ace
is 4pmn = 4ace, i.e.

4ace − λ(4ace − 1)
1− λ4ace

= 4ace.

Since λ 6= 0 we obtain the equivalent equality42
ace−4ace+1 = 0 with solutions ω and ω.

Now, we apply the same technique in some other examples.

Example 1 Let aa1 and bb1 be the altitudes of 4abc through the vertices a and b.
Let points a2 and b2 lie on the lines aa1 and bb1, respectively, such that a is between
a1 and a2, |a2 − a| = |b − c|, b is between b1 and b2 , |b2 − b| = |c − a|. Then the
triangle 4ca2b2 is isosceles and right.

Proof. From a2a⊥bc and |a2 − a| = |b − c|, it follows that a2−a
b−c = ±i. Similarly, we

have that b2−b
c−a = ±i. Hence a2 = a± i(b− c) and b2 = b± i(c− a). Thus,

4ca2b2 =
c− b2

c− a2
=

(c− b)∓ i(c− a)
(c− a)± i(c− b)

= i. Q.E.D.

Example 2 Let 4abc be triangle with 6 bca = 2 6 cab and |a − c| = 2|b − c|. Then
4abc is right.

Proof. Appling the angle-shape formula for the triangle 4bca, we obtain its shape

(4) 4 = 4bca =
1− e−2i( 6 bca)

1− e2i(6 cab)
=

1− e−4iA

1− e2iA
=
e−4iA(e4iA − 1)
−(e2iA − 1)

= −1 + e2iA

e4iA
.

From 4′ = 4cab = |c−b|
|c−a| e

i(6 bca) = 1
2e

2iA, it follows that e2iA = 24′. Replacing in (4),

we have 4 = − 24′+1
44′2 . But 4

′ = 1
1−4 and then 44 = −2(1 −4) − (1 −4)2. Whence

42 = −3. Since the shape of the triangle 4bca is pure imaginary, it is right.More
exactly, 6 abc = π : 2, 6 bca = π : 3 and 6 cab = π : 6.

Example 3 Let 4abc,4cde,4ehk be equilateral triangles with the same orientation
such that −→ad = −→dk. Then the triangle 4bhd also is equilateral.

Proof. If the shapes of triangles 4abc,4cde and 4ehk are ω, then a−c
a−b = c−e

c−d =
e−k
e−h = ω. From here b = c+(ω−1)a

ω , d = e+(ω−1)c
ω and h = k+(ω−1)e

ω . On the other
hand d-a = k-d. Hence k = 2d− a = 2(ω−1)c+2e−ωa

ω . Thus, we obtain

4bhd =
b− d
b− h

=
(ω − 1)a + (2− ω)c− e

(ω − 1)a + c− (ω − 1)e− k
=

=
ω[(ω − 1)a + (2− ω)c− e]

ω2a + (2− ω)c− (ω2 − ω + 2)e
=
ω[ω2a + (2− ω)c− e]
ω2a + (2− ω)c− e

= ω
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(ω is the solution of the equation ω2 − ω + 1 = 0), i.e. the triangle 4bhd is equilateral.
We obtain the same conclusion if 4abc = 4cde = 4ehk = ω (replace ω by ω).

The Second Shape Theorem as well our formulas (1), (2) and (3) hold for arbitrary
triangles. This shows the meaning of the shape for studing of triangle geometry.
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