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Abstract

The stability in terms of two measures is studied by the help with the method
of perturbing families of Lyapunov functions.

1. Introduction

It has been demonstrated [3], [5] that using technique of perturbing Lyapunov func-
tions and employing a family of Lyapunov functions are helpful in discussing nonuniform
properties of solutions of differential systems under weaker assumptions.

In [1], the authors discuss nonuniform stability properties in terms of two measures
employing perturbing families of Lyapunov functions.

Lakshmikantham V. and his followers fully develop [2] the method of vector Lyapunov
functions by combining the ideas involved in the foregoing techniques and this helps in
distributing the burden between groups of components of the vector Lyapunov functions
and the comparison systems.

2. Preliminary results

We consider the initial value problem for the system of differential equations

(1) ẋ = f(t, x)

x(t0) = x0, where x ∈ Rn, f ∈ C[R+ ×Rn, Rn] and f(t, 0) ≡ 0.
We will assume that there exists a solution x(t), t ≥ t0 of the initial value problem

(1) for every point (t0, x0) ∈ R+ ×Rn.
We consider the initial value problem of the following comparison system

(2) u̇ = g(t, u)
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u(t0) = u0 ≥ 0, where u ∈ RN , N ≤ n, g ∈ C[R+ ×RN , RN ] and g(t, 0) ≡ 0.
Let p and q are fixed natural numbers such that p+ q = N . We deduce the following

notation
u = (up, uq) = (u1, u2, . . . , up, up+1, . . . , uN ).

According to the notation mentioned above, the group of components up of a vector
u ∈ RN contain the first p element of u, and the group of components uq — the last
N − p = q elements of a vector u. We note that not regarding the restriction, we can
assume that up contain any p elements of a vector u, and uq — the rest N − p = q

elements of a vector u.
We will define the following classes of functions:

K∗ = [σ ∈ C[R+, R+] : σ(u) is strictly increasing and σ(0) = 0]

CK∗ = [σ ∈ C[R+ ×R+, R+] : σ(t, u) ∈ K∗ for each t ∈ R+]

Γ = [h ∈ C[R+ ×Rn, R+] : inf
x∈Rn

h(t, x) = 0 for each t ∈ R+]

Definition 1 [1]. Let h0, h ∈ Γ. Then we say that h0 is finer that h if there exist a
number ρ > 0 and a function Φ ∈ K∗ such that h0(t, x) < ρ implies h(t, x) ≤ Φ(h0(t, x)).

Definition 2 [1]. The system (1) is said to be (h0, h)-equistable, if given ε > 0 and t0 ∈
R+ there exists a δ = δ(t0, ε) that is continuous in t0 for each ε such that h0(t0, x0) < δ

implies h(t, x(t)) < ε, t ≥ t0.

Definition 3 [2]. Let Q ∈ C[RN
+ , R+] with Q(0) = 0 and Q(u) is nondecreasing in u.

Then we say that Q ∈ K[RN
+ , R+].

Definition 4 [2]. Let V ∈ C[R+ ×Rn, RN ], h0, h ∈ Γ and a function Q ∈ K[RN
+ , R+].

Then V is said to be:
1) h-positive definite if there exist a number ρ > 0 and a function b ∈ K∗ such that

h(t, x) < ρ implies b(h(t, x)) ≤ Q(V (t, x));
2) h0-decrescent if there exist a number ρ0 > 0 and a function a0 ∈ K∗ such that

h0(t, x) < ρ0 implies Q(V (t, x)) ≤ a0(h0(t, x));
3) weakly h0-decrescent if there exist a number ρ0 > 0 and a function a ∈ CK∗ such

that h0(t, x) < ρ0 implies Q(V (t, x)) ≤ a(t, h0(t, x)).

Definition 5 [2]. Let Q1 ∈ K[Rp
+, R+], Q2 ∈ K[Rq

+, R+] and u(t; t0, u0) be any solu-
tion of the system (2) existing for all t ≥ t0. Then the zero solution of the system (2)
is said to be equi-uniform stable if for given ε1 > 0, ε2 > 0 and t0 ∈ R+ there exist
δ1 = δ1(t0, ε1) > 0, δ2 = δ2(ε2) such that

Q1(u0p) < δ1 implies Q1(up(t; t0, u0)) < ε1, t ≥ t0

and
Q2(u0q) < δ2 implies Q2(uq(t; t0, u0)) < ε2, t ≥ t0.
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We assume that the right parts of the system (2) are defined and continuous in the
open domain G ⊂ RN+1 = {t, u1, . . . , uN} and in this domain satisfy the Wazewski’s
condition.

Wazewski’s condition [6]. Each of the function gs(t, u) (s = 1, N) is nondecreas-
ing in u1, . . . , us−1, us+1, . . . , uN , i.e. u′1 ≤ u′′1 , . . . , u′s−1 ≤ u′′s−1, u

′
s = u′′s , u′s+1 ≤

u′′s+1, . . . , u
′
N ≤ u′′N implies gs(t, x′) ≤ gs(t, x′′).

3. Main results

We will give some sufficient conditions for stability in terms of two measures.
Theorem Let the following hypotheses be fulfilled:
(H0) h0, h ∈ Γ and h0 is finer than h;
(H1) V ∈ C[S(h, ρ), RN

+ ], V (t, x) is locally Lipschitzian in x,
S(h, ρ) = {(t, x) : t ∈ R+, h(t, x) < ρ}, Vp(t, x) is weakly h0-decrescent and

b(h(t, x)) ≤ Q2(Vq(t, x)) ≤ a0(h0(t, x)) + a1(Q1(Vp(t, x)))

for (t, x) ∈ S(h, ρ) ∩ Sc(h0, η) for every 0 < η < ρ and Q1(Vp(t, 0)) ≡ 0 where Q1 ∈
K[Rp

+, R+], Q2 ∈ K[Rq
+, R+] and b, a0, a1 ∈ K∗[R+, R+] with p + q = N ;

(H2) Each of the functions gs(t, V ) (s = 1, N) is nondecreasing in V1, . . . , Vs−1, Vs+1, . . . , VN

i.e. fulfils the Wazewski’s condition;
1) D+Vp(t, x) ≤ gp(t, Vp(t, x), 0), (t, x) ∈ S(h, ρ)
2) D+Vq(t, x) ≤ gq(t, V (t, x)), (t, x) ∈ S(h, ρ) ∩ Sc(h0, η)

for every 0 < η < ρ, where Sc(h0, η) is the complement of S(h0, η);
(H3) the zero solution of the system (2) is equi-uniform stable.

Then, the differential system (1) is (h0, h)-equistable.
Proof: Since Vp(t, x) is weakly h0-decrescent, there exists a ρ1 (0 < ρ1 ≤ ρ) and a
Φ0 ∈ CK∗ such that

(3) Q1(Vp(t, x)) ≤ Φ0(t, h0(t, x)) if h0(t, x) < ρ1

Also, h0 is finer than h implies that there exists a ρ0 (0 < ρ0 ≤ ρ1) and a Φ1 ∈ K∗

such that

(4) h(t, x) ≤ Φ1(h0(t, x)) provided h0(t, x) < ρ0

where ρ0 is such that Φ1(ρ0) < ρ1.
Let 0<ε<ρ and t0 ∈ R+ be given. By hypothesis (H3) given ε1 > 0,

ε2 > 0 and t0 ∈ R+, there exist δ10 = δ10(t0, ε1) > 0 and δ20 = δ20(ε2) > 0 such
that

Q1(u0p) < δ10 implies Q1(up(t; t0, u0)) < ε1, t ≥ t0

and
Q2(u0q) < δ20 implies Q2(uq(t; t0, u0)) < ε2, t ≥ t0

(5)

Since a0, Φ1 ∈ K∗, we can find a δ1 = δ1(ε) such that

(6) a0(δ1) < 1
2δ20 and Φ1(δ1) < ε.
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Let ε2 = b(ε) and ε1 = a−1
1 (1

2δ20). Choose u0p = Vp(t0, x0). Since Φ0 ∈ CK∗, Q1(Vp(t, 0))
≡ 0 and (3), it follows that there exists a δ2 = δ2(t0, ε) > 0, δ2 < min(δ1, ρ1) and

(7) h0(t0, x0) < δ2 implies Q1(Vp(t0, x0)) ≤ Φ0(t0, h0(t0, x0)) < δ10.

We set δ = min(δ1, δ2) and suppose that h0(t0, x0) < δ. We note that because of (4)
and (6), we have

(8) h(t0, x0) ≤ Φ1(h0(t0, x0)) ≤ Φ1(δ) ≤ Φ1(δ1) < ε

We claim that h0(t0, x0) < δ implies h(t, x(t)) < ε, t ≥ t0. Assume the contrary, i.e.
according (8), there exists a solution x(t) of the system (1) with h0(t0, x0) < δ and
t2 > t1 > t0 such that

h(t2, x(t2)) = ε < ρ, h0(t1, x(t1)) = δ1(ε)
and

x(t) ∈ S(h, ε) ∩ Sc(h0, η) with η = δ1(ε) for t ∈ [t1, t2].
(9)

It then follows from (H2) that

D+mp(t) ≤ gp(t,mp(t), 0), t0 ≤ t ≤ t2

D+mq(t) ≤ gq(t,m(t)), t1 ≤ t ≤ t2
(10)

where m(t) = V (t, x(t)). Hence by the comparison theorem [4] we have for t1 ≤ t ≤ t2

(11) mp(t) ≤ up(t; t1,m(t1)), mq(t) ≤ uq(t; t1,m(t1))

Let u∗(t) = u(t; t1,m(t1)) ≥ 0 be the extension of u(t) to the left of t1 up to t0
and let u∗(t0) = u∗0. Choose up(t0) = Vp(t0, x0) and uq(t0) = u∗0q. Consider now the
differential inequality which results from (10)

D+mp(t) ≤ gp(t,mp(t), u∗q(t)), up(t0) = mp(t0)

which by comparison theorem [4] yields

(12) mp(t) ≤ up(t; t0, u0), t0 ≤ t ≤ t1, u0 = (up(t0), u∗0q).

Then it is clear that u(t)=(up(t; t0, u0), u∗q(t)) is a solution of the system (2) on [t0, t1].
Using (9), (11) and (H1), we obtain

(13) b(ε) = b(h(t2, x(t2)) ≤ Q2(Vq(t2, x(t2))) ≤ Q2(uq(t2; t1,m(t1)))

But from (5) and (12), we get

Q1(Vp(t1, x(t1))) ≤ Q1(up(t1; t0, u0)) ≤ a−1
1 ( 1

2δ20(ε))

provided Q1(u0p) < δ10. From (H1), (6) and (9) we have now

Q2(Vq(t1, x(t1))) ≤ a0(h0(t1, x(t1))) + a1(Q1(Vp(t1, x(t1))) ≤
≤ a0(δ1(ε)) + a1(a−1

1 ( 1
2δ20)) < δ20

and therefore from (5) we get

Q2(uq(t2; t1,m(t1))) < b(ε)

which contradicts (13). Hence the proof is complete.
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