EXAMPLES OF ALMOST CONTACT MANIFOLDS WITH *B*-METRIC, DERIVED FROM ALMOST COMPLEX MANIFOLDS WITH *B*-METRIC

Mancho Manev

1. Preliminaries.

Let (M^{2n}, J, h) be a 2n-dimensional almost complex manifold with B-metric, i.e. J is the complex structure and h is the metric on M^{2n} such that:

(1)
$$J^2X = -X$$
; $h(JX, JY) = -h(X, Y)$,

for all vector fields X, Y on M^{2n} .

Further, X, Y, Z will stand for arbitrary differentiable vector fields on M^{2n} (i.e. X, Y, $Z \in \mathcal{U}(M^{2n})$) and D — for the Levi-Civita connection of h. The tensor field F of type (0,3) on the manifold M^{2n} is defined by $F(X,Y,Z) = h((D_XJ)Y,Z)$. This tensor has the following symmetries:

(2)
$$F(X,Y,Z) = F(X,Z,Y);$$
 $F(X,Y,Z) = F(X,JY,JZ).$

If $\{e_i\}$ (i=1,2,...,2n) is an arbitrary basis of T_pM^{2n} , h^{ij} are the components of the inverse matrix of h, then the Lee form θ associated with the tensor F is defined by

(3)
$$\theta(x) = h^{ij} F(e_i, e_j, x),$$

for an arbitrary vector x in the tangential space T_pM to M at an arbitrary point p in M.

A classification of the almost compex manifolds with B-metric with respect to the tensor F is given in [5]. The basic classes are defined as following:

$$W_1: F(X,Y,Z) = \{ h(X,Y)\theta(Z) + h(X,Z)\theta(Y) + h(X,JY)\theta(JZ) + h(X,JZ)\theta(JY) \}/2n;$$

(4)
$$W_2$$
: $F(X,Y,JZ)+F(Y,Z,JX)+F(Z,X,JY)=0$, $\theta=0$;

$$W_3$$
: $F(X,Y,Z)+F(Y,Z,X)+F(Z,X,Y)=0$.

The class W_0 : F=0 of the Kaehler manifolds with B-metric belongs to each of the basic classes W_i (i=1, 2, 3).

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be a (2n+1)-dimensional almost contact manifold with *B*-metric, i.e. (φ, ξ, η, g) is an almost contact structure [2] determined by a tensor field φ of type (1,1), a vector field ξ and 1-form η , and g is a metric on M so that:

(5)
$$\varphi^2 = -id + \eta \otimes \xi; \eta(\xi) = 1; g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X) \eta(Y),$$

where X, Y are arbitrary differentiable vector fields on M^{2n+1} . It follows immediately $\eta_{\circ} \varphi = \theta$, $\varphi \xi = \theta$, $\eta(X) = g(X, \xi)$. Moreover the endomorphism φ has rank 2n [6].

Further, arbitrary differentiable vector fields on M^{2n+1} will be denoted by X, Y, Z, and the Levi-Civita connection of g — by C. The tensor field F of type (0,3) on M^{2n+1} is defined by $F(X,Y,Z) = g((\nabla_X \varphi)Y,Z)$. This tensor has the following properties:

$$F(X,Y,Z) = F(X,Z,Y);$$

(6)
$$F(X, \varphi Y, \varphi Z) = F(X, Y, Z) - \eta(Y) F(X, \xi, Z) - \eta(Z) F(X, Y, \xi).$$

The following 1-forms are associated with F:

(7)
$$\theta(x) = g^{ij} F(e_i, e_j, x), \quad \theta^*(x) = g^{ij} F(e_i, \varphi e_j, x), \quad \omega(x) = F(\xi, \xi, x),$$

where x is an arbitrary vector in the tangent space T_pM^{2n+1} at any point p, $\{e_i, \xi\}$ (i=1,2,...,2n) is a basis of T_pM^{2n+1} , and (g^{ij}) is the inverse matrix of (g_{ij}) .

A classification of the almost contact manifolds with *B*-metric with respect to the tensor *F* is given in [6], where the basic classes \mathscr{F}_i (i = 1, 2, ..., 11) of almost contact manifolds with *B*-metric are defined. The classes determined by the main

components of the tensor field F are $\mathcal{F}(i=1, 4, 5, 11)$. These classes are defined by conditions:

$$\mathcal{F}_{1}: F(X,Y,Z) = (1/2n)\{g(X,\varphi Y)\theta(\varphi Z) + g(X,\varphi Z)\theta(\varphi Y) + g(\varphi X,\varphi Y)\theta(\varphi^{2}z) + g(\varphi X,\varphi Z)\theta(\varphi^{2}Y)\};$$

(8)
$$\mathscr{F}_4: F(X,Y,Z) = -\{\theta(\xi)/2n\}\{g(\varphi X, \varphi Y)\eta(Z) + g(\varphi X, \varphi Z)\eta(Y)\};$$

$$\mathscr{F}_{5}: F(X,Y,Z) = -\{\theta^{*}(\xi)/2n\}\{g(X,\varphi Y)\eta(Z) + g(X,\varphi Z)\eta(Y)\};$$

$$\mathscr{F}_{11}: F(X,Y,Z) = \eta(X) \{ \eta(Y) \omega(Z) + \eta(Z) \omega(Y) \}.$$

The special class \mathcal{T}_0 : F=0 is contained in each of the basic eleven classes.

2. Classes of almost contact manifolds with B-metric, derived from almost complex manifolds with B-metric.

In this section we shall be constructed an almost contact manifold with B-metric as a direct product of an almost complex manifold with B-metric and a real line R, endowed with a positive definite scalar product.

It is known [1,3] that the product $M^{2n} \times R$ is a (2n+1)-dimensional differentiable manifold. A vector field on $M^{2n} \times R$ will be denoted by (X, a.d/dt), where $X \in \mathcal{U}(M^{2n})$, a is a differentiable function on $M^{2n} \times R$ and t is the coordinate of R.

As it is well known [2,4], starting from an almost complex structure J on M^{2n} , an almost contact structure can be defined on $M^{2n} \times R$ by setting

(9) $\varphi(X,a.d/dt) = (JX,0), \ \xi = (0,d/dt), \ \eta(X,a.d/dt) = a.$

We define a metric g on $M^{2n} \times R$ by the equality

(10) g((X,a.d/dt),(Y,b.d/dt))=h(X,Y)+ab.

The equalities (5) are easily verified for so defined structure tensors, hence the structure (φ, ξ, η, g) is an almost contact structure with *B*-metric.

If $(x_0, t_0) \in M^{2n} \times R$, we consider injections $i: M^{2n} \to M^{2n} \times R$ and $j: R \to M^{2n} \times R$ defined by $i(x) = (x, t_0)$ and $j(t) = (x_0, t)$; if $X \in \mathbf{X}(M^{2n})$ and a is a differentiable function on $M^{2n} \times R$, $X(a_0, i)$ and $X(a_0, i)$ will simply be denoted X(a) and X(a

Let ∇ (respectively D) be the Levi-Civita connection of the metric g (respectively h). Using the well-known Levi-Civita condition for ∇ and D, we get

(11) $\nabla_{(X,a.d/dt)}(Y,b.d/dt) = (D_XY,\{X(b)+a.d/dt(b)\}.d/dt),$ whence

(12)
$$(\nabla_{(X,a,d/dt)}\varphi)(Y,b.d/dt) = ((D_xJ)Y,0), \nabla_{(X,a,d/dt)}\xi = 0, (\nabla_{(X,a,d/dt)}\eta)(Y,b.d/dt) = 0.$$

Hence for the tensor field F and F^{\star} on M^{2n} and $M^{2n} \times R$ and for its associated 1-forms θ and θ^{\star} , respectively, we obtain

(13)
$$F^{\mathsf{x}}((X,a.d/dt),(Y,b.d/dt),(Z,c.d/dt)) = F(X,Y,Z), \qquad \theta^{\mathsf{x}}(Z,c.d/dt) = \theta(Z),$$

Therefore, we have the following

Theorem 1. If an almost complex manifold M^{2n} belongs to the class W_i , then the almost contact manifold $M^{2n} \times R$ belongs to the class \mathscr{F}_i (i=0, 1, 2, 3).

This result is natural, because the tensor field F is equal to its horizontal component in classification of the almost contact manifolds for the classes \mathscr{F}_1 , \mathscr{F}_2 , \mathscr{F}_3 . The classes \mathscr{F}_2 and \mathscr{F}_3 are defined by conditions [6]:

$$\mathscr{F}_2$$
: $F(X,Y,JZ)+F(Y,Z,JX)+F(Z,X,JY)=0$, $F(\xi,Y,Z)=F(X,\xi,Z)=0$, $\theta=0$;

$$\mathscr{F}_3$$
: $F(X,Y,Z)+F(Y,Z,X)+F(Z,X,Y)=0$, $F(\xi,Y,Z)=F(X,\xi,Z)=0$.

Lemma 2. Let (M^4, J, h) be an arbitrary almost complex manifold with *B*-metric. Then (M^4, J, h) cannot belong to the class W_3 .

Proof. Let (M^4, J, h) belong to the class W_3 and let $\{e_1, e_2, Je_1, Je_2\}$ be a *J*-basis of the tangent space T_pM^4 at the point p in M^4 . Then, according to the definite condition of the class W_3 , it may be is verified immediately that the components of F with respect to this basis are zeros. Therefore, the tensor F of this manifold is identically zero, i.e. $M^4 \in W_0$.

Corollary 3. The almost contact manifold $M^{2n} \times R$ with *B*-metric cannot belong to the class \mathscr{F}_3 . Let us recall for some subclasses:

- $W_I^0 = \{ M^{2n} \in W_I \mid d\theta = d(\theta \cdot J) = 0 \}$ $\mathscr{F}_I^0 = \{ M^{2n+1} \in \mathscr{F}_I \mid d\theta = d\theta^* = 0 \}$ from [9], (14)
- (15)from [8]

and

(16).
$$\mathscr{F}_{ll}^{0} = \{ M^{2n+l} \in \mathscr{F}_{l} / d(\omega, \varphi) = 0 \} \quad \text{from [7]}.$$

Having in mind (13), (14) and (15), Theorem 1 (in case for I=I) implies the following

Corollary 4. If an almost complex manifold M^{2n} is a W_1^0 -manifold, then the almost contact manifold $M^{2n} \times R$ is an \mathscr{A}^0 manifold.

The contactly conformal transformation of general type of an almost contact structure (φ, ξ, η, g) with B-metric to that sort of structure $(\overline{\varphi}, \overline{\xi}, \overline{\eta}, \overline{g})$ is introduced in [7] so that

$$\overline{\varphi} = \varphi;$$
 $\overline{\xi} = e^{-w}\xi;$ $\overline{\eta} = e^{w}\eta;$

$$\overline{g}(X, Y) = e^{2u} \cos 2v \ g(X, Y) + e^{2u} \sin 2v \ g(X, \varphi Y) + (e^{2w} - e^{2u} \cos 2v) \ \eta(X)\eta(Y),$$

where u, v, w is arbitrary differentiable functions on M^{2n+1} and $X, Y \in \mathcal{U}(M^{2n+1})$. Such transformations form a group denoted by

Let us note that the contactly conformal transformation c, introduced in [8], where $c(\varphi, \xi, \eta, g) = (\varphi, \xi, \eta, \overline{g})$, is of general type at w = 0. It's clear that the group of the contactly conformal transformations C, considered in [8], is a subgroup of G.

Besides, let us consider some subgroups of C and G:

$$\begin{split} C_{1} &= \{ c \in C \mid du(\xi) = dv(\xi) = 0 \} , \\ C_{4} &= \{ c \in C \mid du_{o}\varphi = dv_{o}\varphi^{2}, du(\xi) = 0 \} \\ C_{5} &= \{ c \in C \mid du_{o}\varphi = dv_{o}\varphi^{2}, dv(\xi) = 0 \} , \\ C_{15} &= \{ c \in C \mid dv(\xi) = 0 \} , \\ C_{14} &= \{ c \in C \mid du(\xi) = 0 \} , \\ C_{1j} &= \{ c \in C_{1j} \mid c \not\in C_{1}, c \not\in C_{j} \}, (j = 4, 5), \\ C_{1}^{0} &= \{ c \in C_{1} \mid d(du_{o}\varphi) = d(dv_{o}\varphi) = du(\xi) = dv(\xi) = 0 \} , \\ G_{11}^{0} &= \{ f \in G \mid du_{o}\varphi = dv_{o}\varphi^{2}, du(\xi) = dv(\xi) = d(dw(\xi))_{o}\varphi = 0 \} . \end{split}$$

As it is known from [8], the classes \mathscr{F}_4 and \mathscr{F}_5 are contactly conformally related to the class \mathscr{F}_1 by the transformations of the groups C_{I4} * and C_{I5} *, respectively.

In accordance with [8] (respectively [7]) the class \mathscr{F}_{l}^{0} (respectively \mathscr{F}_{ll}^{0}) is the class of manifolds, which are equivalent to the \mathscr{F}_0 -manifolds by the transformations of the group $C_I^{\ \theta}$ (respectively $G_{II}^{\ \theta}$).

In conclusion, the main classes of the almost contact manifolds $\mathcal{F}_i(I=1,4,5,11)$ are derived from the main class of the almost complex manifold W_I . The following diagrams illustrate this derivation:

In this way examples may be constructed of manifolds belonging to the main classes of almost contact manifolds with B-metric.

References

- [1] R. Bishop, R. Crittenden. Geometry of manifolds. Academic press, 1964, New York, London.
- [2] D. Blair. Contact manifolds in Riemannian geometry. Lect. Notes in Math., 7, 1976, 19-35, Springer Verlag.
- [3] S. Kanemaki. On quasi-Sasakian manifolds. Lect. Notes in Diff. Geom., 1979, 20-25, Stefan Banach Int. Math. Center, Warsaw.
- [4] J. Oubina. A classification for almost contact structures, II. Lect. Notes, 1979, 4-5, Santiago de Compostela.
- [5] G. Ganchev, A. Borisov. Note on almost complex manifolds with Norden metric. C. R. Acad. Bulg. Sci., 39 (1986), 31-34.
- [6] G. Ganchev, V.Mihova, K. Gribachev, Almost contact manifolds with B-metric. Math. Balk., 7,1993, 3-4.
- [7] M. Manev. Contactly conformal transformations of general type of almost contact manifolds with B-metric. Applications. Math. Balk. (to appear).
- [8] M. Manev, K. Gribachev. Contactly conformal transformations of almost contact manifolds with B-metric. Serdica, 19, 1993, 287-299.
- [9] G. Ganchev, K. Gribachev, V. Mihova. B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric. *Publ. de L'Inst. Math.*, 42(56), 1987, 107-121.

Faculty of Mathematics and Informatics, University of Plovdiv, Zar Asen 24, 4000 Plovdiv BULGARIA