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On almost paracontact Riemannian manifolds of type (n, n)
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Abstract. In this paper we give a classification with eleven basic classes of almost paracontact Riemannian mani-
folds of type (n, n) with respect to the covariant derivative of the (1, 1)-tensor of the almost paracontact structure.
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1. Introduction

In 1976 I. Sato [1] introduced the concepts of almost paracontact manifolds and of almost
paracontact Riemannian manifolds as analogues of almost contact manifolds and of almost
contact Riemannian manifolds.

After that S. Sasaki [2] defined the notion of an almost paracontact Riemannian manifold of
type (p, q) and arbitrary dimension, where p and q are the numbers of the multiplicity of
the structural eigenvalues 1 and −1, respectively. In addition, there is a simple eigenvalue 0.

In this paper we consider almost paracontact Riemannian manifolds of type (n, n), i.e.
p = q = n. We put this fixation in view of reasons of later investigations relevant to
2n-dimensional Riemannian almost product manifolds (M2n, P, g) with structural group
O(n) × O(n), which are classified in [3]. In this reason the manifolds in our consideration
could be construct by natural way as a direct product of (M2n, P, g) and a real line or as a
hypersurface of (M2n, P, g).

The method used in the present paper is analogous to the methods of classification in [4]
and partly to those in [5] for the almost contact metric manifolds and for the almost contact
manifolds with B-metric, respectively.

2. Preliminaries

A (2n+1)-dimensional real differentiable manifold M is said to have an almost paracontact
structure (φ, ξ, η) of type (n, n), if it admits a (1, 1)-tensor φ, a vector field ξ and a 1-form
η satisfying the following conditions:

η(ξ) = 1, φ2 = I2n+1 − η ⊗ ξ, trφ = 0. (1)
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A positive definite Riemannian metric g is said to be compatible with the almost paracontact
structure if it satisfies the following conditions

g(x,ξ) = η(x), g(φx, φy) = g(x, y) − η(x)η(y) (2)

for all vectors x, y in the tangent space TpM .

The quadruple (φ, ξ, η, g) of an almost paracontact structure of type (n, n) and a compatible
metric is called an almost paracontact Riemannian structure of type (n, n).

We introduce the tensor g̃ given by the equation

g̃(·, ·) = g(·, φ·) + η(·)η(·). (3)

It is a compatible metric with the almost paracontact structure, too. The associated metric
g̃ to the Riemannian metric g is a pseudo-Riemannian metric of signature (n + 1, n).

Let us denote the tensor of type (0, 3) by the equation

F(x,y,z) = g((∇x φ)y,z) (x, y, z ∈ TpM). (4)

Because of (1) and (2) the tensor F has the following properties

F(x, y, z) = F(x, z, y) = −F(x, φy, φz)
(5)

+η(y)F (x, ξ, z) + η(z)F (x, y, ξ)

for all vectors x, y, z in TpM .

If {ei , ξ} (i = 1, 2, . . . , 2n) is a basis of the tangent space TpM and gij are the components
of the inverse matrix of g, then the following 1-forms are associated with the tensor F

θ(x) = gijF (ei, ej , x), θ∗(x) = gijF (ei, φej , x), ω(x) = F(ξ, ξ, x). (6)

for an arbitrary vector x ∈ TpM .

3. The space of covariant derivatives of the (1, 1)-tensor
of the almost paracontact structure

Let (V , φ, ξ, η, g) be (2n + 1)-dimensional vector space with almost paracontact Rieman-
nian structure of type (n, n). We consider the vector space F of the tensors of type (0, 3)

over V having the properties (6). The metric g induces on F an inner product 〈 , 〉, defined
by

〈F ′, F ′′〉 = gip gjqgkrF ′(ei, ej , ek)F
′′(ep, eq, er )

for arbitrary elements F ′, F ′′ in F and a V ’s basis {ei, e2n+1 = ξ} (i = 1, 2, . . . , 2n).
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The standard representation of the structural group O(n)×O(n)× I in V induces a natural
representation of the structural group in F :

(λ(a)F )(x, y, z) = F(a−1x, a−1y, a−1z),

where a ∈ O(n) × O(n) × I , F ∈ F , x, y, z ∈ V , so that

〈λ(a)F ′, λ(a)F ′′〉 = 〈F ′, F ′′〉.

We consider operators h, v, w on V with the properties

h2 = h, v2 = v, w2 = w,

h ◦ v = v ◦ h = h ◦ w = w ◦ h = v ◦ w = w ◦ v = 0.
(7)

The action of these operators on the space F is represented by the equations

hF(x, y, z) = F(φ2x, φ2y, φ2z),

vF (X, Y, Z) = η(x)F (ξ, y, z) + η(y)F (x, z, ξ) + η(z)F (x, y, ξ)

−2η(x) [η(y)F (ξ, ξ, z) + η(z)F (ξ, ξ, y)] ,

wF(x, y, z) = η(x) [η(y)F (ξ, ξ, z) + η(z)F (ξ, ξ, y)]

(8)

The equality (8) implies

F = hF + vF + wF. (9)

Now we define basic operators Fi : F → F (i = 1, 2, . . . , 10) by the equations:

F1(F )(x, y, z) = η(x)F (ξ, y, z),

F2(F )(x, y, z) = η(y)F (x, z, ξ) + η(z)F (x, y, ξ),

F3(F )(x, y, z) = η(x) [η(y)F (ξ, ξ, z) + η(z)F (ξ, ξ, y)],
F4(F )(x, y, z) = η(y)F (z, ξ, x) + η(z)F (y, ξ, x)

−2η(y)η(z)F (ξ, ξ, x),

F5(F )(x, y, z) = η(y)F (φx, ξ, φz) + η(z)F (φx, ξ, φy),

F6(F )(x, y, z) = η(y)F (φz, ξ, φx) + η(z)F (φy, ξ, φx),

F7(F )(x, y, z) = θ(F )(ξ)
2n

{η(y)g(φx,φz) + η(z)g(φx,φy)},
F8(F )(x, y, z) = θ∗(F )(ξ)

2n
{η(y)g(x,φz) + η(z)g(x,φy)},

F9(F )(x, y, z) = 1
2n

{g(φx,φy)θ(φ2z)+g(φx,φz)θ(φ2y)

−g(x,φy)θ(φz) − g(x,φz)θ(φy)},
F10(F )(x, y, z) = 1

3 {hF(x, y, z) + hF(y, z, x) + hF(z, x, y)}.

(10)

It is easy to check that Fi(F ) ∈ F for F ∈ F (i = 1, 2, . . . , 10).

By necessity we have to compute the compositions of the basic operators and the associated
1-forms of Fi(F ).
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LEMMA 1. Let F ∈ F and Fi,j (F ) = Fi(Fj (F )) (i, j = 1, 2, . . . , 10). Then we have:

a) Fi,i(F ) = Fi(F ) for i = 1, 2, 3, 7, . . . , 10;

Fi,i(F ) = F2(F ) − F3(F ) for i = 4, 5, 6;

F1,i (F ) = Fi,1(F ) = F3(F ) for i = 2, 3;

F2,i (F ) = Fi,2(F ) = Fi(F ) for i = 3, 4, 5, 6, 7, 8;

Fi,j (F ) = Fk(F ) for i, j, k = 4, 5, 6;

Fi,j (F ) = Fj,i(F ) = Fj (F ) for i = 4, 5, 6 and j = 7, 8

and the rest of Fi,j (F ) are zeros;

b) θ(Fi(F )) = θ(F )(ξ)η for i = 2, 4, 5, 6, 7;

θ∗(Fi(F )) = θ∗(F )(ξ)η for i = 2, 4, 5, 6, 8;

ω(Fi(F )) = ω(F) for i = 1, 2, 3

and the rest of the associated 1-forms are zeros.

By virtue of the operators Fi we construct new operators Lj (j = 1, 2, . . . , 9). Let

L1 : F → F, L1(F ) = F − 2F3(F ), F ∈ F .

In a straightforward way using Lemma 1 we get that the operator L1 is an involutive isometry
on F and commutes with the action of O(n) × O(n) × I . Hence L1 has two eigenvalues
+1 and −1, and the corresponding eigenspaces (L1F)+ and (L1F)− are orthogonal and
invariant mutually complementary subspaces of F . Besides that, the components of F in
the subspaces (L1F)+ and (L1F)− are 1

2 {F + L1(F )} and 1
2 {F − L1(F )}, respectively.

It is easy to show

LEMMA 2. If F ∈ F then

a) F3(F ) = 0 iff ω(F) = 0;
b) F ∈ (L1F)+, i.e. L1(F ) = F iff F3(F ) = 0;
c) F ∈ (L1F)−, i.e. L1(F ) = −F iff F = F3(F ).

If we denote F11 = (L1F)− and F ⊥
11 = (L1F)+, then according Lemma 2 we have

F11 = {F ∈ F | F = F3(F )}, F ⊥
11 = {F ∈ F | ω(F) = 0}.

Thereby we obtain immediately

PROPOSITION 3. The decomposition F = F11 ⊕ F ⊥
11 is orthogonal and invariant with

respect to the action of O(n)×O(n)× I . The component of an arbitrary element F in F11

(respectively in F ⊥
11) is F3(F ) (respectively F − F3(F )).
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Figure 1

Using the same method we continue to decompose F orthogonally and invariantly with
respect to the action of O(n) × O(n) × I . Thereby we obtain the complete decomposition
into irreducible components by the scheme of Figure 1.

The rest of operators Lj (j = 2, 3, . . . , 9) we define by:

L2(F ) = F − 2{F1(F ) + F2(F )}, L6(F ) = F − 2F7(F ),

L3(F ) = F2(F ) − F1(F ), L7(F ) = F − 2F8(F ),

L4(F ) = −F5(F ), L8(F ) = F − 2F9(F ),

L5(F ) = −F4(F ), L9(F ) = F − 2F10(F ).

The operators Lj (j = 2, 3, . . . , 9) are involutive isometries on the corresponding subspaces
and also commute with the action of O(n) × O(n) × I . According the applying method
the corresponding eigenspaces of the eigenvalues +1 and −1 are orthogonal and mutually
complementary subspaces of the reducible subspace of F .

Since the endomorphism φ induces an almost product structure on the orthogonal comple-
ment {ξ}⊥ of the subspace spanned by ξ and the restriction of g on {ξ}⊥ is a Riemannian
metric compatible with the almost product structure, then the decomposition of hF coin-
cides with the known decomposition of the space of covariant derivatives of the traceless
almost product structure [3].

Taking into account the above reasons we obtain

THEOREM 4. The decomposition F = F1 ⊕ F2 ⊕ · · · ⊕ F11 is orthogonal and invariant
with respect to the action of O(n)×O(n)×I . The characterization conditions of the factors
Fi (i = 1, 2, . . . , 11) for arbitrary vectors x, y, z in V are:



6 Mancho Manev and Maria Staikova J. Geom.

F1 : F(x, y, z) = 1
2n

{g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

−g(x, φy)θ(φz) − g(x, φz)θ(φy)};
F2 : F(x, y, φz) + F(y, z, φx) + F(z, x, φy) = 0,

F (ξ, y, z) = F(x, y, ξ) = 0, θ = 0;
F3 : F(x, y, z) + F(y, z, x) + F(z, x, y) = 0, F (ξ, y, z) = F(x, y, ξ) = 0;
F4 : F(x, y, z) = θ(ξ)

2n
{g(φx, φy)η(z) + g(φx, φz)η(y)};

F5 : F(x, y, z) = θ∗(ξ)
2n

{g(x, φy)η(z) + g(x, φz)η(y)};
F6 : F(x, y, z) = η(y)F (z, ξ, x) + η(z)F (y, ξ, x) − 2η(y)η(z)F (ξ, ξ, x)

= η(y)F (φx, ξ, φz) + η(z)F (φx, ξ, φy), θ(ξ) = θ∗(ξ) = 0;
F7 : F(x, y, z) = −η(y)F (z, ξ, x) − η(z)F (y, ξ, x) + 2η(y)η(z)F (ξ, ξ, x)

= η(y)F (φx, ξ, φz) + η(z)F (φx, ξ, φy);
F8 : F(x, y, z) = η(y)F (z, ξ, x) + η(z)F (y, ξ, x) − 2η(y)η(z)F (ξ, ξ, x)

= −η(y)F (φx, ξ, φz) − η(z)F (φx, ξ, φy);
F9 : F(x, y, z) = −η(y)F (z, ξ, x) − η(z)F (y, ξ, x) + 2η(y)η(z)F (ξ, ξ, x)

= −η(y)F (φx, ξ, φz) − η(z)F (φx, ξ, φy);
F10 : F(x, y, z) = η(x)F (ξ, y, z), F (x, y, ξ) = 0;
F11 : F(x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)}.

The components pi(F ) of an arbitrary element F of F in Fi (i = 1, 2, . . . , 11) are

p1(F ) = F9(F ), p2(F ) = F10(F ),

p3(F ) = hF − F9(F ) − F10(F ), p4(F ) = F7(F ), p5(F ) = F8(F ),

p6(F ) = 1
4 {F2(F ) − F3(F ) + F4(F ) + F5(F ) + F6(F )} − F7(F ) − F8(F ),

p7(F ) = 1
4 {F2(F ) − F3(F ) − F4(F ) + F5(F ) − F6(F )},

p8(F ) = 1
4 {F2(F ) − F3(F ) + F4(F ) − F5(F ) − F6(F )},

p9(F ) = 1
4 {F2(F ) − F3(F ) − F4(F ) − F5(F ) + F6(F )},

p10(F ) = F1(F ) − F3(F ), p11(F ) = F3(F ).

4. Basic classes of almost paracontact Riemannian manifolds of type (n, n)

Let (M, φ, ξ, η, g) be almost paracontact Riemannian manifolds of type (n, n). The tangent
space TpM at an arbitrary point p in M is the vector space V equipped with an almost
paracontact Riemannian structure of type (n, n). Then the corresponding vector space F
considered in the previous section has eleven orthogonal and invariant subspaces Fi . In
such a way the conditions for F at every point p ∈ M give rise to the corresponding class
of manifolds under consideration. Namely, an almost paracontact Riemannian manifold
of type (n, n) is said to be in the class Fi if the tensor F belongs to the subspace Fi

(i = 1, 2, . . . , 11) over TpM at every p in M . Thus the conditions define the eleven
basic classes of almost paracontact Riemannian manifolds of type (n, n). Of course, the
number of all classes of manifold under conversation is 211 and their defining conditions are
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easily obtainable by the basic ones. The special class F0 of almost paracontact Riemannian
manifolds of type (n, n) is defined by the condition F = 0. This class belongs to each of
the defined classes. It is an analogue to the class of cosymplectic almost contact metric
manifolds [4] and to the respective class F0 in the classification of almost contact manifolds
with B-metric [5].

The defined class F4 contains paracontact Riemannian manifolds of type (n, n) [1] and in
particular para-Sasakian manifolds of type (n, n) [7].
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