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In this paper, we construct two types of almost contact B-metric hypersurfaces
of an almost complex manifold with B-metric and we characterize subclasses of
these hypersurfaces of a Kaehlerian B-metric manifold with respect to the second
fundamental tensor.

Introduction

The geometry of almost complex B-metric manifolds is determined by the
action of the almost complex structure as an antiisometry in each tangent
fibre. The basic classes of these even dimensional manifolds are given in 1. The
special class W0 in this classification is the class of the Kaehlerian manifolds
with B-metric, where the almost complex structure is parallel with respect to
the Levi-Civita connection of the B-metric. This class is contained in each
other class. Examples of W0-manifolds are considered in 2, 3, 4.

The geometry of the almost contact B-metric manifolds is a natural ex-
tension of the geometry of the almost complex manifolds with B-metric to
the odd dimensional case. A classification of the almost contact manifolds
with B-metric is given in 5. There are studied some examples of manifolds
belonging to the basic classes in 5, 6, 7.

In this paper, we construct two types hypersurfaces of an almost complex
manifold with B-metric, which are equipped with almost contact B-metric
structures. We determine the class of these almost contact B-metric hyper-
surfaces of a W0-manifold and we characterize its important subclasses with
respect to the second fundamental tensor.

1 Preliminaries

Let (M ′, J, g′) be a 2n′-dimensional almost complex manifold with B-metric,
i.e. J is an almost complex structure and g′ is a metric on M ′ such that:

J2X = −X, g′(JX, JY ) = −g′(X, Y ). (1)
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for all vector fields X, Y on M ′. The associated metric g̃′ of the manifold
is given by g̃′(X,Y ) = g′(X,JY ). Both metrics are necessarily of signature
(n′,n′).

The Levi-Civita connection of g′ will be denoted by ∇′. The tensor field
F ′ of type (0,3) on M ′ is defined by F ′(X,Y ,Z) = g′((∇′X J)Y ,Z) for arbitrary
X,Y ,Z ∈ X(M ′) – the Lie algebra of the differentiable vector fields on M ′.
This tensor has the following symmetries:

F ′(X,Y, Z) = F ′(X, Z, Y ), F ′(X, JY, JZ) = F ′(X, Y, Z).

If {ei} (i = 1, 2, . . . , 2n′) is an arbitrary basis of Tp′M
′ at an arbitrary

point p′ in M ′, and g′ij are the components of the inverse matrix of g′, then
the Lie form θ′ associated with the tensor F ′ is defined by

θ′(x) = g′ijF ′(ei, ej , x)

for an arbitrary vector x ∈ Tp′M
′, p′ ∈ M ′.

A classification with three basic classes of the almost complex manifolds
with B-metric with respect to F ′ is given in 1. Further, we shall consider only
the class W0 : F ′ = 0 of the Kaehlerian manifolds with B-metric belonging
to each of the basic classes.

Let (M, ϕ, ξ, η, g) be a (2n+1)−dimensional almost contact manifold with
B-metric, 5 i.e. (ϕ, ξ, η) is an almost contact structure determined by a tensor
field ϕ of type (1,1) , a vector field ξ and a 1-form η on M satisfying the
conditions:

ϕ2X = −X + η(X)ξ, η(ξ) = 1, (2)

and in addition this almost contact manifold (M,ϕ, ξ, η) admits a metric g
such that

g(ϕX,ϕY ) = −g(X, Y ) + η(X)η(Y ), (3)

where X,Y are arbitrary differentiable vector fields on M , i.e. X, Y ∈ X(M).
It follows immediately

η ◦ ϕ = 0, ϕξ = 0, η(X) = g(X,ξ), g(ϕX,Y ) = g(X,ϕY ). (4)

Moreover the endomorphism ϕ has rank 2n.
The associated metric g̃ given by g̃(X,Y ) = g(X,ϕY ) + η(X)η(Y ) is a

B-metric, too. Both metrics g and g̃ are indefinite of signature (n, n + 1).
Further, X,Y, Z will stand for arbitrary differentiable vector fields on M

and x, y, z – arbitrary vectors in tangential space TpM to M at an arbitrary
point p in M .
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Let ∇ be the Levi-Civita connection of the metric g. The tensor F of type
(0,3) on M is defined by F (x,y,z) = g((∇x ϕ)y,z) and it has the following
properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

If {ei, ξ} (i = 1, 2, . . . , 2n) is a basis of TpM, and (gij) is the inverse matrix of
(gij) then the following 1-forms are associated with F :

θ(·) = gijF (ei, ej , ·), θ∗(·) = gijF (ei, ϕej , ·), ω(·) = F (ξ, ξ, ·).
A classification of the almost contact manifolds with B-metric is given in 5,

where eleven basic classes Fi are defined. We use that characterization condi-
tions changing the definitions of the classes F6,F7,F8 and F9 with equivalent
conditions for computing reasons. Let us denote f(x, y) := F (ϕ2x, ϕ2x, ξ).
Then the characteristics of the classes in consideration are:

F4 : F (x,y,z) = − θ(ξ)
2n {g(ϕx,ϕy)η(z)+g(ϕx,ϕz)η(y)};

F5 : F (x,y,z) = − θ∗(ξ)
2n {g(x,ϕy)η(z)+g(x,ϕz)η(y)};

F6 : F (x, y, z) = f(x, y)η(z) + f(x, z)η(y),

f (x,y)=f(y,x,), f(ϕx,ϕy)=−f(x,y), θ(ξ) = θ∗(ξ) = 0;

F7 : F (x,y,z) = f(x,y)η(z)+f(x,z)η(y),

f (x,y)=−f(y,x), f(ϕx,ϕy)=−f(x,y);

F8 : F (x,y,z) = f(x,y)η(z)+f(x,z)η(y),

f (x,y)=f(y,x), f(ϕx,ϕy)=f(x,y);

F9 : F (x,y,z) = f(x,y)η(z)+f(x,z)η(y),

f (x,y)=−f(y,x), f(ϕx,ϕy)=f(x,y);

F11 : F (x,y,z) = η(x){η(y)ω(z)+η(z)ω(y)}.

(5)

The classes Fi ⊕ Fj , etc., are defined in a natural way by the condi-
tions of the basic classes. There exists 211 classes of almost contact B-metric
manifolds. The special class F0 : F = 0 is contained in each of the defined
classes.

2 Time-like hypersurfaces of an almost complex manifold with
B-metric

It is known, 9,10 that every differentiable orientiable hypersurface of an almost
complex manifold has an almost contact structure. In 5 it is shown that on
every real nonisitropic hypersurface of R2n+2 as complex Riemannian manifold
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with a canonical complex manifold and B-metric there is arised an almost
contact structure with B-metric. In a similar way we construct a hypersurface
of an almost complex manifold with B-metric.

Let (M ′, J, g′) be a (2n+2)-dimensional almost complex manifold with
B-metric, and M be a (2n+1)-dimensional differentiable hypersurface embed-
ding in M ′ such that the normal vector field N to M is a time-like unit with
respect to g′, i.e. g′(N,N) = −1. At every point p for t ∈ (−π

2 ; π
2 ) we set

g′(N, JN) = tan t.

We define the structural vector field ξ on M by the equalities:

ξ = λ.N + µ.JN, g′(ξ, ξ) = 1, g′(ξ,N) = 0.

Then we have ξ = sin t.N +cos t.JN, Jξ = − cos t.N +sin t.JN, whence
we receive

JN = 1
cos tξ − tan t.N, Jξ = tan t.ξ − 1

cos tN.

From the last equality it is clear that Jξ is transverse to M . The transform
vector field JX of X has a tangent component to M denoted by ϕX and a
component with respect to Jξ denoted by η(X)Jξ, i.e. it is valid the unique
decomposition JX = ϕX +η(X)Jξ, where η is a differentiable 1-form on M .
The last decomposition in tangent and normal components takes the following
shape

JX = ϕX + tan t.η(X)ξ − 1
cos tη(X)N. (6)

By such a way we define the structural (1,1)-tensor ϕ and the 1-form η in
TpM at an arbitrary point p ∈ M . The restriction of g′ on M we denote by
g. Then, because of (1), we get immediately (2)–(4). Thus, we obtain that
(ϕ, ξ, η, g) is an almost contact B-metric structure on the hypersurface M . So,
we give the following
Definition 2.1 The hypersurface M of an almost complex manifold with
B-metric (M ′, J, g′), determined by the condition the normal unit N to be
time-like regarding g′, equipped with the almost contact B-metric structure

ϕ := J + cos t.g′(·, JN){cos t.N − sin t.JN},
ξ := sin t.N + cos t.JN, η := cos t.g′(·, JN), g := g′|M ,

where t := arctan {g′(N, JN)} for t ∈ (−π
2 ; π

2

)
, will be called a hypersurface

of first type of (M ′, J, g′).
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Let ∇′ and ∇ be the Levi-Civita connections of the metrics g′ on M ′ and
g on M , respectively. Then the formulas of Gauss and Weingarten in this case
are

∇′XY = ∇XY − g(AX, Y )N, ∇′XN = −AX, (7)

where A is the second fundamental tensor of M corresponding to N .
Using (6) and (7) we compute (∇′XJ)Y and (∇′XJ)N , whence we obtain

F ′(X,Y, Z) = F (X, Y, Z)

+ tan t {F (X, ϕY, ξ)η(Z) + F (X,ϕZ, ξ)η(Y )}
+ 1

cos t

{
g(AX, Y )η(Z) + g(AX, Z)η(Y )

}

+ 1
cos2 tdt(X)η(Y )η(Z),

F ′(X, Y, N) = g(AX, ϕY ) + tan t.g(AX,Y )

+ 1
cos t (∇Xη)Y + tan t

{
1

cos tdt(X) + η(AX)
}

η(Y ),

F ′(X, N, N) = 1
cos t

{
1

cos tdt(X) + 2η(AX)
}

.

In case when (M ′, J, g′) is a Kaehlerian manifold with B-metric there are
valid the following conditions for (M, ϕ, ξ, η, g):

(∇Xϕ)Y = η(Y ){sin t.ϕAX − cos t.η(AX)ξ}
+ {sin t.g(AX,ϕY )− cos t.g(AX, Y )}ξ ,

(∇Xη)Y = − sin t.{g(AX, Y )− η(AX)η(Y )}
− cos t.g(AX, ϕY ) ,

dη(X, Y ) = sin t.{η(AX)η(Y )− η(AY )η(X)}
− cos t.g((ϕ ◦A−A ◦ ϕ)X,Y ) ,

η(AX) = − 1
2 cos t

dt(X) , (8)

∇Xξ = − sin t{AX − η(AX)ξ} − cos t.ϕAX. (9)

F (X,Y, Z) = sin t {g(AX, ϕY )η(Z) + g(AX, ϕZ)η(Y )}
− cos t {g(AX, Y )η(Z) + g(AX, Z)η(Y )

−2η(AX)η(Y )η(Z)} ,

(10)
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θ(Z) = {sin t.tr(A ◦ ϕ)− cos t.[trA− η(Aξ)]}η(Z) ,

θ∗(Z) = {− sin t[trA− η(Aξ)]− cos t.tr(A ◦ ϕ)}η(Z) ,

ω(Z) = − 1
2{dt(ϕ2Z) + tan t.dt(ϕZ)}.

From (8), (9) and because of the symmetry of A regarding g, we obtain the
general shape of the second fundamental tensor of the hypersurface of first
type and the corresponding traces:

AX = − dt(ξ)
2 cos tη(X)ξ − sin t{∇Xξ + g(∇ξξ,X)ξ}

+ cos t{ϕ∇Xξ + g(ϕ∇ξξ, X)ξ}
trA = − dt(ξ)

2 cos t − cos t.θ(ξ))− sin t.θ∗(ξ))

tr(A ◦ ϕ) = sin t.θ(ξ))− cos t.θ∗(ξ)).

(11)

Substituting AX in (10) we get the general shape of F and its associated
1-forms on the hypersurface of first type are

F (X, Y, Z) = F (X,Y, ξ)η(Z) + F (X, ξ, Z)η(Y ),

θ(Z) = θ(ξ)η(Z), θ∗(Z) = θ∗(ξ)η(Z).

Hence, according to (5), it is valid the following
Theorem 2.1 Every hypersurface of first type is an almost contact B-metric
manifold belongs to the class F4 ⊕F5 ⊕F6 ⊕F7 ⊕F8 ⊕F9 ⊕F11.

It is clear that 27 subclasses of hypersurfaces under consideration are
possible but some subclasses are restricted to F0.

Now, we will give the characteristics of some subclasses by the second
fundamental tensor of the submanifold.
Theorem 2.2 I) The following classes of hypersurfaces of first type are
characterized in terms of the second fundamental tensor A by the conditions:

F0 : A = − dt(ξ)
2 cos tη ⊗ ξ;

F4 : A = − dt(ξ)
2 cos tη ⊗ ξ − θ(ξ)

2n {sin t.ϕ− cos t.ϕ2};
F5 : A = − dt(ξ)

2 cos tη ⊗ ξ + θ∗(ξ)
2n {cos t.ϕ + sin t.ϕ2};

F6 : A ◦ ϕ = ϕ ◦A , trA− dt(ξ)
2 cos t = tr(A ◦ ϕ) = 0;

F11 : A = − dt(ξ)
2 cos tη ⊗ ξ − cos t{η ⊗ Ω + ω ⊗ ξ}

− sin t{η ⊗ ϕΩ + (ω ◦ ϕ)⊗ ξ},
where ω = g(·, Ω);
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F4 ⊕F5 : A = − dt(ξ)
2 cos tη ⊗ ξ − 1

2n

{
[sin t.θ(ξ)− cos t.θ∗(ξ)]ϕ

−[cos t.θ(ξ) + sin t.θ∗(ξ)]ϕ2
}
;

F4 ⊕F6 : A ◦ ϕ = ϕ ◦A , sin t
{

trA− dt(ξ)
2 cos t

}
+ cos t.tr(A ◦ ϕ) = 0;

F4 ⊕F11 : A = − dt(ξ)
2 cos tη ⊗ ξ + cos t

{
θ(ξ)
2n ϕ2 − η ⊗ Ω− ω ⊗ ξ

}

− sin t
{

θ(ξ)
2n ϕ + η ⊗ ϕΩ + (ω ◦ ϕ)⊗ ξ

}
;

F5 ⊕F6 : A ◦ ϕ = ϕ ◦A , cos t
{

trA− dt(ξ)
2 cos t

}
− sin t.tr(A ◦ ϕ) = 0;

F5 ⊕F11 : A = − dt(ξ)
2 cos tη ⊗ ξ + cos t

{
θ∗(ξ)
2n ϕ− η ⊗ Ω− ω ⊗ ξ

}

+sin t
{

θ∗(ξ)
2n ϕ2 − η ⊗ ϕΩ− (ω ◦ ϕ)⊗ ξ

}
;

F6 ⊕F11 : ϕ2 ◦A ◦ ϕ = ϕ ◦A ◦ ϕ2, trA− dt(ξ)
2 cos t = tr(A ◦ ϕ) = 0;

F4 ⊕F5 ⊕F6 : A ◦ ϕ = ϕ ◦A;

F4 ⊕F5 ⊕F11 : A = − dt(ξ)
2 cos tη ⊗ ξ

+cos t
{

θ(ξ)
2n ϕ2 + θ∗(ξ)

2n ϕ− η ⊗ Ω− ω ⊗ ξ
}

− sin t
{

θ(ξ)
2n ϕ− θ∗(ξ)

2n ϕ2 + η ⊗ ϕΩ + (ω ◦ ϕ)⊗ ξ
}

;

F4 ⊕F6 ⊕F11 : ϕ2 ◦A ◦ ϕ = ϕ ◦A ◦ ϕ2 ,

sin t
{

trA− dt(ξ)
2 cos t

}
+ cos t.tr(A ◦ ϕ) = 0;

F5 ⊕F6 ⊕F11 : ϕ2 ◦A ◦ ϕ = ϕ ◦A ◦ ϕ2 ,

cos t
{

trA− dt(ξ)
2 cos t

}
− sin t.tr(A ◦ ϕ) = 0;

F4 ⊕F5 ⊕F6 ⊕F11 : ϕ2 ◦A ◦ ϕ = ϕ ◦A ◦ ϕ2;

II) A hypersurface of first type can’t belong to the classes F7 ,F8 ,F9, to
their direct sums or to the direct sums of someone of them with someone of
F4 ,F5 orF6.
Proof. Having in mind (5), the covariant derivative of ξ can be expressed
explicite in the subclasses F0,F4,F5,F11,F4 ⊕ F5,F4 ⊕ F11,F5 ⊕ F11 and
F4 ⊕F5 ⊕F11. Then A takes the corresponding shape for considered classes.

Now, let us consider the classes F6,F7,F8,F9 and their direct sums. The
conditions F (X,Y, ξ) = F (Y,X, ξ) and F (ϕX,ϕY, ξ) = −F (X, Y, ξ) imply
individually A ◦ ϕ = ϕ ◦ A, and the commutation of A and ϕ implies the
properties F (X,Y, ξ) = F (Y, X, ξ) = −F (ϕX, ϕY, ξ).

Besides, each of properties F (X, Y, ξ) = −F (Y, X, ξ) and F (ϕX, ϕY, ξ) =
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F (X, Y, ξ) follows to A ◦ ϕ = −ϕ ◦ A, and the anticommutation of A and ϕ
implies the properties F (X, Y, ξ) = −F (Y, X, ξ) = F (ϕX, ϕY, ξ).

Obviously, if we suppose that a hypersurface of first type belongs to F7

or to F8, we obtain that it is only an F0-manifold.
The conditions for F on F9-manifold imply the anticommutation of A

and ϕ. In other hand the 1-form η is clossed on F9-manifold as well as on
a manifold in F4 ,F5 and F6. Taking into account (8) and (9) we obtain
A ◦ ϕ = ϕ ◦ A. Hence a hypersurface of first type can’t be in the class F9

without F0.
It is easy to get the propositions about F6 ,F4 ⊕ F5 ⊕ F6 ⊕ F11 and the

remaining classes in I).
The part II) of the theorem is received immediately from the explanations

above. Q.E.D.
We shall give geometric interpretation of some of these classes.
We recall, if A = 0, trA = 0 or A = λI, then the corresponding hyper-

surface is totally geodesical, minimal or umbilical, respectively.
Having in mind (11) and (5), we get

Proposition 2.3 (i) The totally geodesical hypersurfaces of first type form
a subclass of F0 with the condition t = const;

(ii) The minimal hypersurfaces of first type form a subclass of the general
class of hypersurfaces with the condition cos t.θ(ξ) + sin t.θ∗(ξ) + dt(ξ)

2 cos t = 0.

(iii) The umbilical hypersurfaces of first type form a subclass of F4 ⊕ F5

with the condition sin t.θ(ξ) − cos t.θ∗(ξ) = 0. There can’t exist umbilical
hypersurfaces of first type in F4 or F5. The umbilical F0-hypersurfaces of first
type are totally geodesical.
Remark. If M ′ = R2n+2, then it is received the example in 5 of the time-like
unit hypersphere of the class F4 ⊕ F5, which is an umbilic hypersurface of
R2n+2.

3 Isotropic hypersurfaces regarding the associated metric of an
almost complex manifold with B-metric

In 5 it is defined an real isotropic hypersurface of the associated metric in
R2n+2, considered as a complex Riemannian manifold with a canonical com-
plex structure and B-metric. In a similar way we introduce an isotropic hyper-
surface regarding the associated metric of an almost complex manifold with
B-metric.

Let (M ′, J, g′), dimM = 2n + 2, be an almost complex manifold with
B-metric. We determine a (2n+1)-dimensional differentiable hypersurface M
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embedding in M ′ by the condition M : g̃′(Z, Z) = 0 for a vector field Z on
M ′. It is clear that Z and its transform vector field JZ by J are orthogonal
with respect to the B-metric g′, i.e. g′(Z, JZ) = 0. At every point we put
g′(Z,Z) = cosh2 t , t > 0 for the sake of the impossibility Z to be a main
isotropic direction and in view of definiteness.

We can choose the time-like unit normal N = 1
cosh tJZ, i.e. g′(N, N) =

−1. Hence, JN is a space-like unit tangent vector field on M .
We determine the structural vector field ξ on M by

ξ = −JN = 1
cosh tZ.

Then the vector field Jξ coincides with N .
Thus, in this case the introducing of the structural (1,1)-tensor ϕ and

1-form η is made by the unique orthogonal decomposition

Jx = ϕx + η(x)N. (12)

The restriction of g′ on M we denote by g. Then, ascertaining (2)–
(4), we obtain that (ϕ, ξ, η, g) is an almost contact B-metric structure on the
hypersurface M . In such a way we can formulate
Definition 3.1 The hypersurface M of an almost complex manifold with
B-metric (M ′, J, g′), determined by the condition the normal unit N to be
isotropic regarding the associated B-metric g̃′ of g′, equipped with the almost
contact B-metric structure

ϕ := J + g′(·, JN)N, ξ := −JN, η := −g′(·, JN), g := g′|M
will be called a hypersurface of second type of (M ′, J, g′).

Now, we shall study a classification of these manifolds with respect to the
second fundamental tensor A of the hypersurface.

The formulas of Gauss and Weingarten are

∇′XY = ∇XY − g(AX, Y )N, ∇′XN = −AX. (13)

Taking into account (12) and (13) we compute (∇′XJ)Y and (∇′XJ)N .
Then we get

F ′(X, Y, Z) = F (X, Y, Z)− g(AX,Y )η(Z)− g(AX,Z)η(Y ),

F ′(X, Y,N) = −(∇Xη)Y + g(AX, ϕY ), F ′(X, N,N) = −2η(AX).

In case when (M ′, J, g′) is a Kaehlerian manifold with B-metric, the left
hand sites of the last equalities are vanished. Then we obtain the following
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conditions for (M, ϕ, ξ, η, g):

(∇Xϕ)Y = η(Y )AX + g(AX,Y )ξ,

(∇Xη)Y = g(AX, ϕY ),

dη(X, Y ) = g((ϕ ◦A−A ◦ ϕ)X, Y ),

η(AX) = 0 ( ⇐⇒ Aξ = 0), ∇Xξ = ϕAX, (14)

F (X, Y, Z) = g(AX,Y )η(Z) + g(AX,Z)η(Y ), (15)

θ(Z) = trA.η(Z), θ∗(Z) = tr(A ◦ ϕ)η(Z), ω(Z) = 0.

Because of (15) the second fundamental tensor on the hypersurface of
second type is AX = −ϕ∇Xξ .

From (16) it follows F (X, Y, ξ) = g(AX, Y ) and in view of the symmetry
of A regarding g we get the symmetry F (X,Y, ξ) = F (Y, X, ξ). Besides, for
F , θ , θ∗ and ω on the hypersurface of second type we receive

F (X, Y, Z) = F (X,Y, ξ)η(Z) + F (X, ξ, Z)η(Y ),

θ = θ(ξ)η, θ∗ = θ∗(ξ)η, ω = 0.

Having in mind the classification (5) and the results above, we ascertain the
truthfulness of the following
Theorem 3.1 Every hypersurface of second type is an almost contact B-
metric manifold belongs to the class F4 ⊕F5 ⊕F6 ⊕F8.

Obviously, 16 subclasses of hypersurfaces of second type are possible.
Now, we shall write up some of these classes with respect to A.

Theorem 3.2 Some classes of the hypersurfaces of second type are charac-
terized by the second fundamental tensor A as follows:

F0 : A = 0;

F4 : A = − θ(ξ)
2n ϕ2;

F5 : A = − θ∗(ξ)
2n ϕ;

F6 : A ◦ ϕ = ϕ ◦A , Aξ = 0 , trA = tr(A ◦ ϕ) = 0;

F8 : A ◦ ϕ = −ϕ ◦A , Aξ = 0;
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F4 ⊕F5 : A = − 1
2n{θ(ξ)ϕ2 + θ∗(ξ)ϕ};

F4 ⊕F6 : A ◦ ϕ = ϕ ◦A , Aξ = 0 , tr(A ◦ ϕ) = 0;

F5 ⊕F6 : A ◦ ϕ = ϕ ◦A , Aξ = 0 , trA = 0 ;

F6 ⊕F8 : Aξ = 0 , trA = tr(A ◦ ϕ) = 0;

F4 ⊕F5 ⊕F6 : A ◦ ϕ = ϕ ◦A , Aξ = 0;

We give a geometrical interpretation of some of these classes according to
the results of the last theorem by the following
Proposition 3.3 (i) The totally geodesical hypersurfaces of second type are
the F0-manifolds;

(ii) The minimal hypersurfaces of second type are the F5⊕F6⊕F8-manifolds;

(iii) Every umbilical hypersurface of second type is totally geodesical hyper-
surface, i.e. it belongs to the class F0 .
Remark. If M ′ = R2n+2, then it is obtained the example in 5 of the isotropic
hypersphere of g̃′ belonging to F5 and it is a minimal hypersurface of R2n+2.
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