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1 Introduction

We shall consider almost complex manifolds (M, J) equipped with two different
kinds of metrics. When J acts as an isometry we receive the notion of almost
Hermitian manifold. But in the case when J acts as an antiisometry we have the
notion of almost complex manifold with B-metric.

It is well known how to extend J to an almost contact structure on an odd-
dimensional manifold. In the first case the Hermitian metric of (M, J) induces
an almost contact metric manifold. In the second – we receive an almost contact
manifold with B-metric.

We shall study the case of B-metric.
Let (M ′, J, g′) be a 2n′-dimensional almost complex manifold with B-metric,

i.e. J is an almost complex structure and g′ is a metric on M ′ such that: [2]

J2X = −X, g′(JX, JY ) = −g′(X, Y ).

for all vector fields X, Y on M ′. The associated metric g̃′ of the manifold is defined
as follows g̃′(X, Y ) := g′(X,JY ). Both metrics are necessarily of signature (n′, n′).

The class of the Kaehler manifolds with B-metric is determined by the condition
that J be parallel with respect to the Levi-Civita connection of g′.

Let (M, ϕ, ξ, η, g, g̃) be a (2n + 1)-dimensional almost contact manifold with
B-metric [4], i.e. at first (ϕ, ξ, η) is an almost contact structure determined by a
tensor field ϕ of type (1, 1), by a vector field ξ and by an 1-form η on M according
the conditions: [1]

ϕ2X = −X + η(X)ξ, η(ξ) = 1.

In addition this almost contact manifold (M, ϕ, ξ, η) admits a metric g, called B-
metric, such that

g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ),

where X,Y are arbitrary differentiable vector fields on M , i.e. X,Y ∈ X(M).
The associated metric g̃ given by g̃(X, Y ) := g(X,ϕY ) + η(X)η(Y ) (X,Y ∈

X(M)) is a B-metric, too. Both metrics g and g̃ are indefinite of signature (n, n+1).
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We have in mind the following immediate consequences of the above conditions:

η ◦ϕ = 0, ϕξ = 0, rankϕ = 2n, η(X) = g(X,ξ), g(ξ,ξ) = 1, g(ϕX,Y ) = g(X,ϕY ).

Further, X, Y , Z will stand for arbitrary differentiable vector fields on M , and
x, y, z – for arbitrary vectors in the tangent space TpM to M at an arbitrary point
p in M .

Let ∇ be the Levi-Civita connection of the metric g. The tensor F of type (0, 3)
on M is defined by F (x, y, z) = g((∇xϕ)y, z). It has the following properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

Each fiber TpM of the tangent bundle TM is a (2n + 1)-dimensional vector
space with the structure (ϕp, ξp, ηp, gp).

The decomposition TpM = {Dp = ker(ηp)} ⊕ span{ξp} is orthogonal and in-
variant with respect to the structural group

(
GL(n,C) ∩ O(n, n)

) × I. The 2n-
dimensional vector space Dp is equipped with a complex structure ϕp and B-metrics
gp, g̃p.

Let {ei, ξ} (i = 1, 2, . . . , 2n) be a basis of TpM, and (gij) be the inverse matrix
of the matrix (gij) of g. Then the following 1-forms are associated with F :

θ(·) = gijF (ei, ej , ·), θ∗(·) = gijF (ei, ϕej , ·), ω(·) = F (ξ, ξ, ·).(1)

A classification of the almost contact manifolds with B-metric is given in [4].
It contains eleven basic classes Fi defined with respect to the tensor F . We shall
use the following characteristic conditions of the considered classes:

F4 : F (x, y, z) = − θ(ξ)
2n {g(ϕx, ϕy)η(z) + g(ϕx, ϕz)η(y)};

F5 : F (x, y, z) = − θ∗(ξ)
2n {g(x, ϕy)η(z) + g(x, ϕz)η(y)};

F6 : F (x, y, z) = f(x, y)η(z) + f(x, z)η(y),

f(x, y) = f(y, x), f(ϕx, ϕy) = −f(x, y), θ(ξ) = θ∗(ξ) = 0;

F8 : F (x, y, z) = f(x, y)η(z) + f(x, z)η(y),

f(x, y) = f(y, x), f(ϕx, ϕy) = f(x, y),

(2)

where f(x,y) = F (ϕ2x,ϕ2y, ξ), instead of the known ones of [4].
The classes Fi ⊗Fj , etc., are defined in a natural way by the conditions of the

basic classes. There exist 211 classes of almost contact B-metric manifolds.
In [5] two types of real hypersurfaces of a complex manifold with B-metric were

introduced. The obtained submanifolds are almost contact B-metric manifolds.
Let us recall, the real isotropic hypersurface M of an almost complex manifold
with B-metric (M ′2n+2, J, g′, g̃′) is determined by the condition the normal unit N
to be isotropic regarding the associated B-metric g̃′ of g′. Moreover, M is equipped
with the almost contact B-metric structure

ϕ := J + g′(·, JN)N, ξ := −JN, η := −g′(·, JN), g := g′|M .(3)
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Let ∇′ and ∇ be the Levi-Civita connections of g′ on M ′ and g on M , respec-
tively. If h(X, Y ) = g(AX, Y ) is the second fundamental form of the hypersurface
M , then the formulas of Gauss and Weingarten seem as follows:

∇′XY = ∇XY − h(X,Y )N, ∇′XN = −AX.

In [5] we found out the classification tensor of the real isotropic hypersurface of
a Kaehler manifold with B-metric

F (X, Y, Z) = f(X, Y )η(Z) + f(X, Z)η(Y ) = h(X, Y )η(Z) + h(X, Z)η(Y ).(4)

In consequence it is obtained that every real isotropic hypersurface of a Kaehler
manifold with B-metric is an almost contact B-metric manifold belonging to the
class F4⊗F5⊗F6⊗F8. In the same work are given the characteristic conditions in
terms of the second fundamental tensor A only for the basic classes F4, F5, F6, F8

and for some of their direct sums.
The present paper continues the studies of the real isotropic hypersurfaces of a

Kaehler manifold with B-metric. Our aim is to describe all possible classes of the
considered hypersurfaces with respect to their second fundamental form. Using
an orthogonal and invariant with respect to the structural group decomposition
of h we get four basic components and we show that the four basic corresponding
classes generate all sixteen possible classes. Thereby we give conditions for h which
characterize when a real isotropic hypersurface belongs to everyone of the sixteen
classes.

2 The sixteen classes

It follows from (4) that the tensor f(X, Y ) is symmetric on the considered hy-
persurface. On the other hand, f can be pure tensor with respect to ϕ, i.e.
f(ϕX,ϕY ) = f(X, Y ). The equivalent condition in terms of h is the following
h(ϕ2X, ϕ2Y ) − h(ϕX, ϕY ) = 0. Another case is the case of hybrid tensor with
respect to ϕ, i.e. f(ϕX,ϕY ) = −f(X,Y ). Equivalently, we have h(ϕ2X,ϕ2Y ) +
h(ϕX,ϕY ) = 0. So we receive the following result.

Theorem 1 The class of the real isotropic hypersurfaces of a Kaehler manifold
with B-metric is the class F4 ⊗ F5 ⊗ F6 ⊗ F8. There are 16 classes of these
hypersurfaces in all.

Remark 2 When n = 1 the class F6 is restricted to F0. Therefore, for 4-
dimensional Kaehler manifold with B-metric there are only 8 classes of considered
3-dimensional hypersurfaces.

Now we characterize these classes in terms of their second fundamental form h.
Since X = −ϕ2X + η(X)ξ, Y = −ϕ2Y + η(Y )ξ, we have

h(X,Y ) = h(ϕ2X,ϕ2Y )− η(X)h(ξ, ϕ2Y )− η(Y )h(ϕ2X, ξ) + η(X)η(Y )h(ξ, ξ).
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Having in mind h(X, ξ) = h(ξ, Y ) = 0, it follows h(X, Y ) = h(ϕ2X, ϕ2Y ), i.e. the
tensor h has components only over the complex B-metric vector space (D, ϕ, g, g̃).

Let (V, J, g′, g̃′) be a 2n-dimensional vector space with a complex structure J
and B-metrics g′ and g̃′. Let V ∗ denote the dual space of V . We consider the space
V ∗ ⊗ V ∗, i.e. the vector space of the tensors of type (0, 2) over V . The metric g′

induces an inner product 〈 , 〉 on V ∗ ⊗ V ∗, given by

〈f1, f2〉 = gijgksf1(ei, ek)f2(ej , es)

for f1, f2 in V ∗ ⊗ V ∗ and {ei} (i = 1, 2, . . . , 2n) – a basis of V . With every f in
V ∗ ⊗ V ∗ we associate the functions: trf = gijf(ei, ej), tr∗f = gijf(ei, Jej). We
denote G = GL(n,C) ∩O(n, n). The standard representation of G on V induces a
natural representation λ of G on V ∗ ⊗ V ∗ and

〈(λa)f1, (λa)f2〉 = 〈f1, f2〉; a ∈ G; f1, f2 ∈ V ∗ ⊗ V ∗.

Let us consider the vector subspace W of V ∗ ⊗ V ∗ of the symmetric (0, 2)-
tensors over V . We remark that g and g̃ are symmetric and hybrid tensors with
respect to the almost complex structure J and, besides, every symmetric J-pure
tensor is traceless. Then it is easy to check the truthfulness of the following

Lemma 3 Every symmetric (0, 2)-tensor f(x, y) over (V, J, g′, g̃′), dim V = 2n,
has four orthogonal and invariant components with respect to the action of G on
W :

f1(x, y) = 1
2 [f(x, y) + f(Jx, Jy)], f2(x, y) = trf

2n g(x, y), f3(x, y) = − tr∗f
2n g(x, Jy),

f4(x, y) = 1
2 [f(x, y)− f(Jx, Jy)]− trf

2n g(x, y) + tr∗f
2n g(x, Jy).

As h is a symmetric (0, 2)-tensor over (Dp, ϕp, gp), we can apply the last lemma
for h . We denote the following symmetric tensors:

h4(X, Y ) = − θ(ξ)
2n g(ϕX,ϕY ), h5(X, Y ) = − θ∗(ξ)

2n g(X, ϕY ),

h6(X, Y ) = 1
2

{
h(ϕ2X, ϕ2Y )− h(ϕX, ϕY )

}
+ θ(ξ)

2n g(ϕX, ϕY ) + θ∗(ξ)
2n g(X, ϕY )

= 1
2 (Lξg)(ϕX,ϕ2Y ) + θ(ξ)

2n g(ϕX, ϕY ) + θ∗(ξ)
2n g(X, ϕY ),

h8(X, Y ) = 1
2

{
h(ϕ2X, ϕ2Y ) + h(ϕX, ϕY )

}
= − 1

2dη(ϕX,ϕ2Y ),

(5)

where

dη(X, Y ) = (∇Xη)Y − (∇Y η)X = h(X,ϕY )− h(Y, ϕX),

(Lξg)(X, Y ) = (∇Xη)Y + (∇Y η)X = h(X, ϕY )− h(Y, ϕX).

Therefore, h has the form

h = h4 + h5 + h6 + h8.

Taking into account (2) and (4), we describe the mentioned sixteen classes in
terms of h. This is our main result.
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Theorem 4 The sixteen classes of real isotropic hypersurfaces of a Kaehler man-
ifold with B-metric are characterized in terms of their second fundamental form h
as follows:

F0 : h = 0; Fi ⊗Fj ⊗Fk : h = hi + hj + hk;

Fi : h = hi; (i, j, k = 4, 5, 6, 8; i 6= j 6= k 6= i)

Fi ⊗Fj : h = hi + hj; F4 ⊗F5 ⊗F6 ⊗F8 : h = h4 + h5 + h6 + h8,
(6)

where the components hi (i = 4, 5, 6, 8) are given in (5).

3 An example

In this section we construct an example of a 3-dimensional real isotropic hypersur-
face of a holomorphic sphere. We show that it belongs to the basic class F5.

A surface S2n of a Kaehler manifold with B-metric (R2n+2, J, ḡ), called h-
sphere, is defined by ḡ(x, x) = a, ˜̄g(x, x) = b, a, b ∈ R, (a, b) 6= (0, 0) in [3]. It is
shown there that the h-sphere is a Kaehler manifold with B-metric.

We propose the following explicit example of an h-sphere S4 in R6:

x1 = a
2 [cos(u1 − u3) cosh(u2 − u4) + cos(u1 + u3) cosh(u2 + u4)],

x2 = a
2 [sin(u1 + u3) cosh(u2 + u4)− sin(u1 − u3) cosh(u2 − u4)],

x3 = a sin u1 coshu2,

x4 = −a
2 [sin(u1 + u3) sinh(u2 + u4) + sin(u1 − u3) sinh(u2 − u4)],

x5 = −a
2 [cos(u1 − u3) sinh(u2 − u4)− cos(u1 + u3) sinh(u2 + u4)],

x6 = a cosu1 sinhu2,

(7)

omitting the set of points (u1 = π
2 , u2 = 0). The almost complex structure J is

defined by

J ∂x
∂u1 = ∂x

∂u2 , J ∂x
∂u2 = − ∂x

∂u1 , J ∂x
∂u3 = ∂x

∂u4 , J ∂x
∂u4 = − ∂x

∂u3 .

We find the non-zero components of the B-metric g′ij = g′
(

∂x
∂ui ,

∂x
∂uj

)
for

∂x
∂ui

(
∂x1

∂ui , . . . , ∂x6

∂ui

)
:

g′11 = −g′22 = −a2, g′33 = −g′44 = −a
2

(
1 + cos 2u1 cosh 2u2

)
,

g′34 = −a
2 sin 2u1 sinh 2u2

and the non-zero components Γ′kij (i, j, k ∈ {1, 2, 3, 4}) of the Levi-Civita connec-
tion:

Γ′313 = Γ′414 = Γ′423 = −Γ′324 = − sin 2u1

cos 2u1+cosh 2u2 ,

Γ′133 = Γ′234 = −Γ′144 = 1
2 sin 2u1 cosh 2u2,

Γ′413 = −Γ′314 = −Γ′323 = −Γ′424 = − sinh 2u2

cos 2u1+cosh 2u2 ,

Γ′233 = −Γ′134 = −Γ′244 = 1
2 cos 2u1 sinh 2u2.
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We obtain the basis {e′k = ∂x
∂uk }, k ∈ {1, 2, 3, 4} of the tangent space TpS

4.
Since g′1k = g′2s = 0, k = 2, 3, 4, s = 3, 4 we can substitute N = 1

ae′1 and ξ = − 1
ae′2.

For the corresponding 1-form η of ξ we have η(x) = −ax2, x = xie′i, i = 2, 3, 4.
The action of ϕ on the orthogonal distribution of N is determined by the following
way: ϕe′2 = 0, ϕe′3 = e′4, ϕe′4 = −e′3.

Hence we construct an isotropic hypersurface M3 : g̃′(N, N) = 0 (alternatively
M3 : u1 = 0) of the given h-sphere and we equip M3 with the almost contact
B-metric structure (ϕ, ξ, η, g, g̃) according to (3) .

We choose a basis {e1, e2, e3} of the tangent space TpM
3 by e1 = e′3, e2 =

e′4, e3 = e′2 and then we have to substitute u3 for u2 .
Therefore, the non-zero components gij and Γk

ij are:

g11 = −g22 = a2

2

(
1 + cosh 2u3

)
, g33 = a2

Γ3
11 = −Γ3

22 = − 1
2 sinh 2u3, Γ1

13 = Γ2
23 = sinh 2u3

1+cosh 2u3 .
(8)

According to (1) and the above results, we compute for x = xiei, i = 1, 2, 3:

θ(x) = 0, θ∗(x) = 2x3 sinh 2u3

1 + cosh 2u3
, ω(x) = 0.(9)

It is known [5], that for an isotropic hypersurface of a Kaehler manifold with
B-metric h(x, y) = −g(∇xξ, ϕy). Then we obtain

h(x, y) =
sinh 2u3

a(1 + cosh 2u3)
g(x, ϕy)

by direct computation in the basis {e1, e2, e3} using (8).
Hence, according to (9) and (5), we get h(x, y) = h5(x, y). Having in mind The-

orem 4, we establish that the constructed manifold (M3, ϕ, ξ, η, g, g̃) is an almost
contact B-metric manifold belonging to the basic class F5.
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