ON HYPERCOMPLEX PSEUDO-HERMITIAN MANIFOLDS

KOSTADIN GRIBACHEV

Faculty of Mathematics and Informatics, University of Plovdiv, 236 Bulgaria Blvd., Plovdiv 4004, Bulgaria E-mail: costas@pu.acad.bg

MANCHO MANEV

Faculty of Mathematics and Informatics, University of Plovdiv, 236 Bulgaria Blvd., Plovdiv 4004, Bulgaria E-mail: mmanev@pu.acad.bg

STANCHO DIMIEV

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, Sofia 1113, Bulgaria, E-mail: sdimiev@math.bas.bg

The class of the hypercomplex pseudo-Hermitian manifolds is considered. The flatness of the considered manifolds with the 3 parallel complex structures is proved. Conformal transformations of the metrics are introduced. The conformal invariance and the conformal equivalence of the basic types manifolds are studied. A known example is characterized in relation to the obtained results.

Introduction

This paper is a continuation of the same authors's paper ⁴ which is inspired by the seminal work ¹ of D. V. Alekseevsky and S. Marchiafava. We follow a parallel direction including skew-Hermitian metrics with respect to the almost hypercomplex structure.

In the first section we give some necessary facts concerning the almost hypercomplex pseudo-Hermitian manifolds introduced in ⁴.

In the second one we consider the special class of (integrable) hypercomplex pseudo-Hermitian manifolds, namely pseudo-hyper-Kähler manifolds. Here we expose the proof of the mentioned in ⁴ statement that each pseudo-hyper-Kähler manifold is flat.

The third section is fundamental for this work. A study of the group of conformal transformations of the metric is initiated here. The conformal invariant classes and the conformal equivalent class to the class of the pseudo-hyper-Kähler manifolds are found.

Finally, we characterize a known example in terms of the conformal transformations.

1 Preliminaries

1.1 Hypercomplex pseudo-Hermitian structures in a real vector space

Let V be a real 4n-dimensional vector space. By $\left\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i}, \frac{\partial}{\partial u^i}, \frac{\partial}{\partial v^i}\right\}$, $i = 1, 2, \ldots, n$, is denoted a (local) basis on V. Each vector x of V is represented in the mentioned basis as follows

$$x = x^{i} \frac{\partial}{\partial x^{i}} + y^{i} \frac{\partial}{\partial y^{i}} + u^{i} \frac{\partial}{\partial u^{i}} + v^{i} \frac{\partial}{\partial v^{i}}.$$
 (1)

A standard complex structure on V is defined as in 5 :

$$J_{1}\frac{\partial}{\partial x^{i}} = \frac{\partial}{\partial y^{i}}, \quad J_{1}\frac{\partial}{\partial y^{i}} = -\frac{\partial}{\partial x^{i}}, J_{1}\frac{\partial}{\partial u^{i}} = -\frac{\partial}{\partial v^{i}}, J_{1}\frac{\partial}{\partial v^{i}} = \frac{\partial}{\partial u^{i}};$$

$$J_{2}\frac{\partial}{\partial x^{i}} = \frac{\partial}{\partial u^{i}}, \quad J_{2}\frac{\partial}{\partial y^{i}} = \frac{\partial}{\partial v^{i}}, \quad J_{2}\frac{\partial}{\partial u^{i}} = -\frac{\partial}{\partial x^{i}}, J_{2}\frac{\partial}{\partial v^{i}} = -\frac{\partial}{\partial y^{i}};$$

$$J_{3}\frac{\partial}{\partial x^{i}} = -\frac{\partial}{\partial v^{i}}, J_{3}\frac{\partial}{\partial y^{i}} = \frac{\partial}{\partial u^{i}}, \quad J_{3}\frac{\partial}{\partial u^{i}} = -\frac{\partial}{\partial y^{i}}, J_{3}\frac{\partial}{\partial v^{i}} = \frac{\partial}{\partial x^{i}}.$$

$$(2)$$

The following properties about J_{α} are direct consequences of (2)

$$J_1^2 = J_2^2 = J_3^2 = -Id, J_1J_2 = -J_2J_1 = J_3, \quad J_2J_3 = -J_3J_2 = J_1, \quad J_3J_1 = -J_1J_3 = J_2.$$
 (3)

If $x \in V$, i.e. $x(x^i, y^i, u^i, v^i)$ then according to (2) and (3) we have

$$J_1x(-y^i, x^i, v^i, -u^i), \quad J_2x(-u^i, -v^i, x^i, y^i), \quad J_3x(v^i, -u^i, y^i, -x^i).$$
 (4)

Definition 1.1 (1) A triple $H = (J_1, J_2, J_3)$ of anticommuting complex structures on V with $J_3 = J_1J_2$ is called a hypercomplex structure on V;

A bilinear form f on V is defined as ordinary, $f: V \times V \to \mathbb{R}$. We denote by $\mathcal{B}(V)$ the set of all bilinear forms on V. Each f is a tensor of type (0,2), and $\mathcal{B}(V)$ is a vector space of dimension $16n^2$.

Let J be a given complex structure on V. A bilinear form f on V is called Hermitian (respectively, skew-Hermitian) with respect to J if the identity f(Jx, Jy) = f(x, y) (respectively, f(Jx, Jy) = -f(x, y) holds true.

Definition 1.2 (1) A bilinear form f on V is called an Hermitian bilinear form with respect to $H = (J_{\alpha})$ if it is Hermitian with respect to any complex structure J_{α} , $\alpha = 1, 2, 3$, i.e.

$$f(J_{\alpha}x, J_{\alpha}y) = f(x, y) \qquad \forall \ x, y \in V. \tag{5}$$

We denote by $L_0 = \mathcal{B}_H(V)$ the set of all Hermitian bilinear forms on V. The notion of pseudo-Hermitian bilinear forms is introduced by the following **Definition 1.3** (4) A bilinear form f on V is called a pseudo-Hermitian bilinear form with respect to $H = (J_1, J_2, J_3)$, if it is Hermitian with respect to J_{α} and skew-Hermitian with respect to J_{β} and J_{γ} , i.e.

$$f(J_{\alpha}x, J_{\alpha}y) = -f(J_{\beta}x, J_{\beta}y) = -f(J_{\gamma}x, J_{\gamma}y) = f(x, y) \quad \forall \ x, y \in V,$$
 (6)

where (α, β, γ) is a circular permutation of (1, 2, 3).

We denote $f \in L_{\alpha} \subset \mathcal{B}(V)$ ($\alpha = 0, 1, 2, 3$) when f satisfies the conditions (5) and (6), respectively.

In 1 is introduced a pseudo-Euclidian metric g with signature (2n,2n) as follows

$$g(x,y) := \sum_{i=1}^{n} \left(-x^{i}a^{i} - y^{i}b^{i} + u^{i}c^{i} + v^{i}d^{i} \right), \tag{7}$$

where $x(x^i, y^i, u^i, v^i)$, $y(a^i, b^i, c^i, d^i) \in V$, i = 1, 2, ..., n. This metric satisfies the following properties

$$g(J_1x, J_1y) = -g(J_2x, J_2y) = -g(J_3x, J_3y) = g(x, y).$$
(8)

This means that the pseudo-Euclidean metric q belongs to L_1 .

The form $g_1: g_1(x,y) = g(J_1x,y)$ coincides with the Kähler form Φ which is Hermitian with respect to J_{α} , i.e.

$$\Phi(J_{\alpha}x, J_{\alpha}y) = \Phi(x, y), \quad \alpha = 1, 2, 3, \quad \Phi \in L_0.$$

The attached to g associated bilinear forms $g_2: g_2(x,y) = g(J_2x,y)$ and $g_3: g_3(x,y) = g(J_3x,y)$ are symmetric forms with the properties

$$-g_2(J_1x, J_1y) = -g_2(J_2x, J_2y) = g_2(J_3x, J_3y) = g_2(x, y), -g_3(J_1x, J_1y) = g_3(J_2x, J_2y) = -g_3(J_3x, J_3y) = g_3(x, y),$$
(9)

i.e. $g_2 \in L_3, g_3 \in L_2$.

It follows that the Kähler form Φ is Hermitian regarding H and the metrics g, g_2, g_3 are pseudo-Hermitian of different types with signature (2n, 2n).

Now we recall the following notion:

Definition 1.4 (4) The structure $(H,G) := (J_1, J_2, J_3, g, \Phi, g_2, g_3)$ is called a hypercomplex pseudo-Hermitian structure on V.

1.2 Structural tensors on an almost (H, G)-manifold

Let (M, H) be an almost hypercomplex manifold ¹. We suppose that g is a symmetric tensor field of type (0, 2). If it induces a pseudo-Hermitian inner product in T_pM , $p \in M$, then g is called a pseudo-Hermitian metric on M.

The structure $(H,G) := (J_1,J_2,J_3,g,\Phi,g_2,g_3)$ is called an almost hypercomplex pseudo-Hermitian structure on M or in short an almost (H,G)-structure on M. The manifold M equipped with H and G, i.e. (M,H,G), is called an almost hypercomplex pseudo-Hermitian manifold, or in short an almost (H,G)-manifold. ⁴

The 3 tensors of type (0,3) $F_{\alpha}: F_{\alpha}(x,y,z) = g((\nabla_x J_{\alpha})y,z), \alpha = 1,2,3$, where ∇ is the Levi-Civita connection generated by g, is called *structural* tensors of the almost (H,G)-manifold. ⁴

The structural tensors satisfy the following properties:

$$F_1(x, y, z) = F_2(x, J_3 y, z) + F_3(x, y, J_2 z),$$

$$F_2(x, y, z) = F_3(x, J_1 y, z) + F_1(x, y, J_3 z),$$

$$F_3(x, y, z) = F_1(x, J_2 y, z) - F_2(x, y, J_1 z);$$
(10)

$$F_1(x, y, z) = -F_1(x, z, y) = -F_1(x, J_1 y, J_1 z),$$

$$F_2(x, y, z) = F_2(x, z, y) = F_2(x, J_2 y, J_2 z),$$

$$F_3(x, y, z) = F_3(x, z, y) = F_3(x, J_3 y, J_3 z).$$
(11)

Let us recall the Nijenhuis tensors $N_{\alpha}(X,Y) = \frac{1}{2} [[J_{\alpha},J_{\alpha}]](X,Y)$ for almost complex structures J_{α} and $X,Y \in \mathfrak{X}(M)$, where

$$\left[\left[J_{\alpha},J_{\alpha}\right]\right]\left(X,Y\right)=2\left\{\left[J_{\alpha}X,J_{\alpha}Y\right]-J_{\alpha}\left[J_{\alpha}X,Y\right]-J_{\alpha}\left[X,J_{\alpha}Y\right]-\left[X,Y\right]\right\}.$$

It is well known that the almost hypercomplex structure $H=(J_{\alpha})$ is a hypercomplex structure if $[[J_{\alpha},J_{\alpha}]]$ vanishes for each $\alpha=1,2,3$. Moreover it is known that one almost hypercomplex structure H is hypercomplex if and only if two of the structures J_{α} ($\alpha=1,2,3$) are integrable. This means that two of the tensors N_{α} vanish. ¹

We recall also the following definitions. Since g is Hermitian metric with respect to J_1 , according to 3 the class \mathcal{W}_4 is a subclass of the class of Hermitian manifolds. If (H, G)-manifold belongs to \mathcal{W}_4 , with respect to J_1 , then the almost complex structure J_1 is integrable and

$$F_1(x, y, z) = \frac{1}{2(2n-1)} \left[g(x, y)\theta_1(z) - g(x, z)\theta_1(y) - g(x, J_1 y)\theta_1(J_1 z) + g(x, J_1 z)\theta_1(J_1 y) \right], \tag{12}$$

where $\theta_1(\cdot)=g^{ij}F_1(e_i,e_j,\cdot)=\delta\Phi(\cdot)$ for the basis $\{e_i\}_{i=1}^{4n}$, and δ – the coderivative.

On other side the metric g is a skew-Hermitian with respect to J_2 and J_3 , i.e. $g(J_2x,J_2y)=g(J_3x,J_3y)=-g(x,y)$. A classification of all almost complex manifolds with skew-Hermitian metric (Norden metric or B-metric) is given in 2 . One of the basic classes of integrable almost complex manifolds

with skew-Hermitian metric is W_1 . It is known that if an almost (H, G)-manifold belongs to $W_1(J_\alpha)$, $\alpha = 2, 3$, then J_α is integrable and the following equality holds

$$F_{\alpha}(x,y,z) = \frac{1}{4n} \left[g(x,y)\theta_{\alpha}(z) + g(x,z)\theta_{\alpha}(y) + g(x,J_{\alpha}y)\theta_{\alpha}(J_{\alpha}z) + g(x,J_{\alpha}z)\theta_{\alpha}(J_{\alpha}y) \right], \tag{13}$$

where $\theta_{\alpha}(z) = g^{ij} F_{\alpha}(e_i, e_j, z), \ \alpha = 2, 3$, for an arbitrary basis $\{e_i\}_{i=1}^{4n}$.

When (12) is satisfied for (M, H, G), we say that $(M, H, G) \in \mathcal{W}(J_1)$. In the case, (M, H, G) satisfies (13) for $\alpha = 2$ or $\alpha = 3$, we say $(M, H, G) \in \mathcal{W}(J_2)$ or $(M, H, G) \in \mathcal{W}(J_3)$. Let us denote the class $\mathcal{W} := \bigcap_{\alpha=1}^{3} \mathcal{W}(J_{\alpha})$.

The next theorem gives a sufficient condition an almost (H,G)-manifold to be integrable.

Theorem 1.1 (4) Let (M, H, G) belongs to the class $W(J_{\alpha}) \cap W(J_{\beta})$. Then (M, H, G) is of class $W(J_{\gamma})$ for all cyclic permutations (α, β, γ) of (1, 2, 3).

Let us remark that necessary and sufficient conditions (M,H,G) to be in $\mathcal W$ are

$$\theta_{\alpha} \circ J_{\alpha} = -\frac{2n}{2n-1}\theta_1 \circ J_1, \qquad \alpha = 2, 3.$$
 (14)

2 Pseudo-hyper-Kähler manifolds

Definition 2.1 (4) A pseudo-Hermitian manifold is called a pseudo-hyper-Kähler manifold, if $\nabla J_{\alpha} = 0$ ($\alpha = 1, 2, 3$) with respect to the Levi-Civita connection generated by g.

It is clear, then $F_{\alpha} = 0$ ($\alpha = 1, 2, 3$) holds or the manifold is Kählerian with respect to J_{α} , i.e. $(M, H, G) \in \mathcal{K}(J_{\alpha})$.

Immediately we obtain that if (M, H, G) belongs to $\mathcal{K}(J_{\alpha}) \cap \mathcal{W}(J_{\beta})$ then $(M, H, G) \in \mathcal{K}(J_{\gamma})$ for all cyclic permutations (α, β, γ) of (1, 2, 3).

Then the following sufficient condition for a K-manifold is valid.

Theorem 2.1 (4) If $(M, H, G) \in \mathcal{K}(J_{\alpha}) \cap \mathcal{W}(J_{\beta})$ then M is a pseudo-hyper-Kähler manifold $(\alpha \neq \beta \in \{1, 2, 3\})$.

Let (M^{4n}, H, G) be a pseudo-hyper-Kähler manifold and ∇ be the Levi-Civita connection generated by g. The curvature tensor seems as follows

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \tag{15}$$

and the corresponding tensor of type (0,4) is

$$R(X,Y,Z,W) = q(R(X,Y)Z,W), \quad \forall X,Y,Z,W \in \mathfrak{X}(M). \tag{16}$$

Lemma 2.2 The curvature tensor of a pseudo-hyper-Kähler manifold has the following properties:

$$R(X,Y,Z,W) = R(X,Y,J_1Z,J_1W) = R(J_1X,J_1Y,Z,W)$$

$$= -R(X,Y,J_2Z,J_2W) = -R(J_2X,J_2Y,Z,W)$$

$$= -R(X,Y,J_3Z,J_3W) = -R(J_3X,J_3Y,Z,W),$$
(17)

$$R(X,Y,Z,W) = R(X,J_1Y,J_1Z,W) = -R(X,J_2Y,J_2Z,W) = -R(X,J_3Y,J_3Z,W).$$
(18)

Proof. The equality (17) is valid, because of (15), (16), the condition $\nabla J_{\alpha} = 0$ ($\alpha = 1, 2, 3$), the equality (8) and the properties of the curvature (0, 4)-tensor.

To prove (18), we will show at first that the property $R(X, J_2Y, J_2Z, W) = -R(X, Y, Z, W)$ holds. Indeed, from (17) we get

$$R(J_2X, Y, Z, W) = R(X, J_2Y, Z, W), \quad R(X, Y, J_2Z, W) = R(X, Y, Z, J_2W)$$

and $\mathfrak{S}_{X,Y,Z}R(X,Y,J_2Z,J_2W)=0$, where $\mathfrak{S}_{X,Y,Z}$ denotes the cyclic sum regarding X,Y,Z. In the last equality we replace Y by J_2Y and W by J_2W . We get

$$-R(X, J_2Y, J_2Z, W) - R(J_2Y, Z, J_2X, W) + R(Z, X, Y, W) = 0.$$
 (19)

Replacing Y by Z, and inversely, we get

$$-R(X, J_2Z, J_2Y, W) - R(J_2Z, Y, J_2X, W) + R(Y, X, Z, W) = 0.$$
 (20)

As we have

$$-R(J_2Z, Y, J_2X, W) = -R(Z, J_2Y, J_2X, W) = R(J_2Y, Z, X, W),$$

with the help of (19) and (20) we obtain

$$-R(X, J_2Y, J_2Z, W) - R(X, J_2Z, J_2Y, W) +R(Z, X, Y, W) + R(Y, X, Z, W) = 0.$$
(21)

According to the first Bianchi identity and (17), we obtain

$$-R(X, J_2Z, J_2Y, W) = R(J_2Z, J_2Y, X, W) + R(J_2Y, X, J_2Z, W)$$

= $-R(Z, Y, X, W) - R(X, J_2Y, J_2Z, W).$

Then the equality (21) seem as follows

$$-2R(X, J_2Y, J_2Z, W) + R(Z, X, Y, W) - R(X, Y, Z, W) + R(Y, Z, X, W) = 0$$

By the first Bianchi identity the equality is transformed in the following

$$-2R(X, J_2Y, J_2Z, W) - 2R(X, Y, Z, W) = 0,$$

which is equivalent to

$$R(X, J_2Y, J_2Z, W) = -R(X, Y, Z, W).$$
(22)

As the tensor R has the same properties with respect to J_3 , and to J_2 , it follows that the next equality holds, too.

$$R(X, J_3Y, J_3Z, W) = -R(X, Y, Z, W).$$
(23)

Using (22) and (23) for $J_1 = J_2 J_3$ we get successively that

$$R(X,Y,Z,W) = R(X,J_1Y,J_1Z,W)$$

= $R(X,J_2(J_3Y),J_2(J_3Z),W) = -R(X,J_3Y,J_3Z,W),$

which completes the proof of (18).

Now we will prove a theorem which gives us a geometric characteristic of the pseudo-hyper-Kähler manifolds.

Theorem 2.3 Each pseudo-hyper-Kähler manifold is a flat pseudo-Riemannian manifold with signature (2n, 2n).

Proof. Lemma 2.2 implies the properties

$$-R(X,Y,Z,W) = R(X,J_1Y,Z,J_1W)$$

= $R(X,J_2Y,Z,J_2W) = R(X,J_3Y,Z,J_3W).$ (24)

As $J_1 = J_2 J_3$, we also have the following

$$R(X, J_1Y, Z, J_1W) = R(X, J_2(J_3Y), Z, J_2(J_3W))$$

= $-R(X, J_3Y, Z, J_3W) = R(X, Y, Z, W).$

Comparing (24) with the last equality we receive

$$-R(X, Y, Z, W) = R(X, J_1Y, Z, J_1W) = R(X, Y, Z, W),$$

or $R \equiv 0$.

3 Conformal transformations of the pseudo-Hermitian metric

The usual conformal transformation $c: \bar{g} = e^{2u}g$, where u is a differential function on M^{4n} , is known. Since $g_{\alpha}(\cdot,\cdot) = g(J_{\alpha}\cdot,\cdot)$, the conformal transformation of g causes the same changes of the pseudo-Hermitian metrics g_2,g_3 and the Kähler form $\Phi \equiv g_1$. Then we say that it is given a conformal transformation c of G to \bar{G} determined by $u \in \mathcal{F}(M)$. These conformal transformations form a group denoted by C. The hypercomplex pseudo-Hermitian manifolds (M,H,G) and (M,H,\bar{G}) we call C-equivalent manifolds or conformal-equivalent manifolds.

Let ∇ and $\bar{\nabla}$ be the Levi-Civita connections determined by the metrics g and \bar{g} , respectively. The known condition for a Levi-Civita connection implies the following relation

$$\bar{\nabla}_X Y = \nabla_X Y + du(X)Y + du(Y)X - g(X, Y)\operatorname{grad}(u). \tag{25}$$

Using (25) and the definitions of structural tensors for ∇ and $\bar{\nabla}$ we obtain

$$\bar{F}_1(X,Y,Z) = e^{2u} \left[F_1(X,Y,Z) - g(X,Y) du(J_1 Z) + g(X,Z) du(J_1 Y) + g(J_1 X,Y) du(Z) - g(J_1 X,Z) du(Y) \right],$$
(26)

$$\bar{F}_{\alpha}(X,Y,Z) = e^{2u} \left[F_{\alpha}(X,Y,Z) + g(X,Y) du(J_{\alpha}Z) + g(X,Z) du(J_{\alpha}Y) - g(J_{\alpha}X,Y) du(Z) - g(J_{\alpha}X,Z) du(Y) \right]$$
(27)

for $\alpha=2,3.$ The last two equalities imply the following relations for the corresponding structural 1-forms

$$\bar{\theta}_1 = \theta_1 - 2(2n-1)du \circ J_1, \qquad \bar{\theta}_\alpha = \theta_\alpha + 4ndu \circ J_\alpha, \quad \alpha = 2, 3.$$
 (28)

Let us denote the following (0,3)-tensors.

$$P_{1}(x, y, z) = F_{1}(x, y, z) - \frac{1}{2(2n-1)} \left[g(x, y)\theta_{1}(z) - g(x, z)\theta_{1}(y) - g(x, J_{1}y)\theta_{1}(J_{1}z) + g(x, J_{1}z)\theta_{1}(J_{1}y) \right],$$
(29)

$$P_{\alpha}(x, y, z) = F_{\alpha}(x, y, z) - \frac{1}{4n} \left[g(x, y)\theta_{\alpha}(z) + g(x, z)\theta_{\alpha}(y) + g(x, J_{\alpha}y)\theta_{\alpha}(J_{\alpha}z) + g(x, J_{\alpha}z)\theta_{\alpha}(J_{\alpha}y) \right], \quad \alpha = 2, 3.$$
(30)

According to (12) and (13) it is clear that

$$(M, H, G) \in \mathcal{W}(J_{\alpha}) \iff P_{\alpha} = 0 \quad (\alpha = 1, 2, 3).$$

The equalities (26)–(28) imply the following two interconnections

$$\bar{P}_{\alpha} = e^{2u} P_{\alpha}, \quad \alpha = 1, 2, 3; \tag{31}$$

$$\bar{\theta}_{\alpha} \circ J_{\alpha} + \frac{2n}{2n-1}\bar{\theta}_{1} \circ J_{1} = \theta_{\alpha} \circ J_{\alpha} + \frac{2n}{2n-1}\theta_{1} \circ J_{1}, \quad \alpha = 2, 3.$$
 (32)

From (31) we receive that each of $W(J_{\alpha})$ ($\alpha = 1, 2, 3$) is invariant with respect to the conformal transformations of C, i.e. they are C-invariant classes. Having in mind also (32), we state the validity of the following

Theorem 3.1 The class W of hypercomplex pseudo-Hermitian manifolds is C-invariant.

Now we will determine the class of the (locally) C-equivalent \mathcal{K} -manifolds. Let us denote the following subclass $\mathcal{W}^0 := \{ \mathcal{W} \mid d(\theta_1 \circ J_1) = 0 \}$.

Theorem 3.2 A hypercomplex pseudo-Hermitian manifold belongs to W^0 if and only if it is C-equivalent to a pseudo-hyper-Kähler manifold.

Proof. Let (M, H, G) be a pseudo-hyper-Kähler manifold, i.e. $(M, H, G) \in \mathcal{K}$. Then $F_{\alpha} = \theta_{\alpha} = 0$ ($\alpha = 1, 2, 3$). Hence (28) has the form

$$\bar{\theta}_1 = -2(2n-1)du \circ J_1, \qquad \bar{\theta}_\alpha = 4ndu \circ J_\alpha, \quad \alpha = 2, 3.$$
 (33)

From (26), (27) and (33) and having in mind (12) and (13) we obtain that (M, H, \bar{G}) is a W-manifold. According to (33) the 1-forms $\bar{\theta}_{\alpha} \circ J_{\alpha}$ ($\alpha = 1, 2, 3$) are closed. Because of (14) the condition $d(\bar{\theta}_1 \circ J_1) = 0$ is sufficient.

Conversely, let (M, H, \bar{G}) be a W-manifold with closed $\bar{\theta}_1 \circ J_1$. Because of (14) the 1-forms $\bar{\theta}_{\alpha} \circ J_{\alpha}$ ($\alpha = 2, 3$) are closed, too. We determine the function u as a solution of the differential equation $du = -\frac{1}{2(2n-1)}\bar{\theta}_1 \circ J_1$. Then by an immediate verification we state that the transformation $c^{-1}: g = e^{-2u}\bar{g}$ converts (M, H, \bar{G}) into $(M, H, G) \in \mathcal{K}$. This completes the proof.

Let us remark the following inclusions

$$\mathcal{K} \subset \mathcal{W}^0 \subset \mathcal{W} \subset \mathcal{W}(J_\alpha), \quad \alpha = 1, 2, 3.$$

Let R, ρ, τ and $\bar{R}, \bar{\rho}, \bar{\tau}$ be the curvature tensors, the Ricci tensors, the scalar curvatures corresponding to ∇ and $\bar{\nabla}$, respectively. The following tensor is curvature-like, i.e. it has the same properties as R.

$$\psi_1(S)(X, Y, Z, U) = g(Y, Z)S(X, U) - g(X, Z)S(Y, U) + g(X, U)S(Y, Z) - g(Y, U)S(X, Z),$$

where S is a symmetric tensor.

Having in mind (25) and (15), we obtain

Proposition 3.3 The following relations hold for the C-equivalent (H, G)manifolds

$$\bar{R} = e^{2u} \{ R - \psi_1(S) \},
\bar{\rho} = \rho - \text{tr} Sg - 2(2n-1)S, \qquad \bar{\tau} = e^{-2u} \{ \tau - 2(4n-1)\text{tr} S \},$$
(34)

where

$$S(Y,Z) = S(Z,Y) = (\nabla_Y du) Z + du(Y) du(Z) - \frac{1}{2} du(\operatorname{grad}(du)) g(Y,Z).$$
(35)

If (M, H, G) is a C-equivalent W-manifold to a K-manifold, i.e. $(M, H, G) \in W^0$, then Proposition 3.3 implies

Corollary 3.4 A W^0 -manifold has the following curvature characteristic

$$R = \frac{1}{2(2n-1)} \left\{ \psi_1(\rho) - \frac{\tau}{4n-1} \pi_1 \right\},\,$$

where $\pi_1(X, Y, Z, U) = \frac{1}{2}\psi_1(g) = g(Y, Z)g(X, U) - g(X, Z)g(Y, U)$.

It is well known that the C-invariant tensor of each pseudo-Riemannian manifold is the so-called Weil tensor W. From (34) we receive immediately

$$\bar{W} = e^{2u}W, \qquad W = R - \frac{1}{2(2n-1)} \left\{ \psi_1(\rho) - \frac{\tau}{4n-1} \pi_1 \right\}.$$
 (36)

Let us remark that the vanishing of the Weil tensor is a necessary and sufficient condition a pseudo-Riemannian manifold to be conformal equivalent to a flat manifold with dimension greater than 3.

This is confirmed by the combining of Theorem 2.3, Theorem 3.2 and Corollary 3.4, i.e. $(M, H, G) \in \mathcal{W}^0$ iff W = 0 on (M, H, G).

Since each conformal transformation determines uniquely a symmetric tensor S by (35) then it takes an interest in the consideration S as a bilinear form on T_pM belonging to each of the components L_{α} , ($\alpha = 0, 1, 2, 3$).

Let $S \in L_0$. In view of (5) $\operatorname{tr} S = 0$ holds and according to (34) we receive $\bar{\tau} = e^{-2u}\tau$ and an invariant tensor $W_0 = R - \frac{1}{2(2n-1)}\psi_1(\rho)$. When W_0 vanishes on (M, H, G) then the curvature tensor has the form $R = \frac{1}{2(2n-1)}\psi_1(\rho)$.

In the cases when $S \in L_{\alpha}$ ($\alpha = 1, 2, 3$) we consider (M, H, G) as an \mathcal{W}^0 -manifold. Then according to Theorem 2.3 and Theorem 3.2 we have $\bar{R} = 0$ on the C-equivalent \mathcal{K} -manifold of (M, H, G).

Now let $S \in L_1$. By reason of $g \in L_1$ we have a cause for the consideration of the possibility $S = \lambda g$. Hence $\lambda = \frac{\operatorname{tr} S}{4n} = \frac{\tau}{8n(4n-1)}$. Then having in mind (34) $R = \frac{\tau}{4n(4n-1)}\pi_1$ holds true. From here it is clear that if $S \in L_1$ then (M, H, G) is an Einstein manifold.

Let us consider the case when $S \in L_2$. Then according to (6) $\operatorname{tr} S$ vanishes, and from (34) τ vanishes, too. Because of $g_3 \in L_2$ we consider $S = \lambda g_3$, whence $\lambda = -\frac{\operatorname{tr}(S \circ J_3)}{4n}$. Then (34) implies $R = \frac{\operatorname{tr}(S \circ J_3)}{4n} \pi_3^{J_3}$, where $\pi_3^{J_3}$ is the following tensor π_3 with respect to the complex structure $J = J_3$

$$\pi_3(X, Y, Z, U) = -\pi_1(X, Y, JZ, U) - \pi_1(X, Y, Z, JU).$$

It is known ² that π_3 is a Kähler curvature-like tensor, i.e. it satisfies the property $\pi_3(X,Y,JZ,JU) = -\pi_3(X,Y,Z,U)$. Therefore in this case R is Kählerian with respect to J_3 and the tensor $R^{*J_3}: R^{*J_3}(X,Y,Z,U) = R(X,Y,Z,J_3U)$ is curvature-like. Then we obtain immediately

$$R = \frac{\tau(R^{*J_3})}{8n(2n-1)} \pi_3^{J_3}, \qquad \rho = -\frac{\tau(R^{*J_3})}{4n} g_3.$$

Hence if $S \in L_2$ then (M, H, G) is a *-Einstein manifold with respect to J_3 . By an analogous way, in the case when $S \in L_3$ we receive that (M, H, G) is a *-Einstein manifold with respect to J_2 .

A 4-dimensional pseudo-Riemannian spherical manifold with (H,G)-structure

In 4 is considered a hypersurface S_2^4 in \mathbb{R}_2^5 by the equation

$$-(z^{1})^{2} - (z^{2})^{2} + (z^{3})^{2} + (z^{4})^{2} + (z^{5})^{2} = 1,$$
 (37)

where $Z\left(z^{1},z^{2},z^{3},z^{4},z^{5}\right)$ is the positional vector of $p\in S_{2}^{4}$.

Let (u^1, u^2, u^3, u^4) be local coordinates of p on S_2^4 . The hypersurface S_2^4 is defined by the scalar parametric equations:

$$z^{1} = \sinh u^{1} \cos u^{2}, \quad z^{2} = \sinh u^{1} \sin u^{2}, \quad z^{3} = \cosh u^{1} \cos u^{3} \cos u^{4},$$

$$z^{4} = \cosh u^{1} \cos u^{3} \sin u^{4}, \quad z^{5} = \cosh u^{1} \sin u^{3}.$$

$$(38)$$

Further we consider the manifold on $\tilde{S}_2^4 = S_2^4 \setminus \{(0,0,0,0,\pm 1)\}$, i.e. we omit two points for which $\{u^1 \neq 0\} \cap \{u^3 \neq (2k+1)\pi/2, k \in \mathbb{Z}\}$. The tangent space $T_p \tilde{S}_2^4$ of \tilde{S}_2^4 in the point $p \in \tilde{S}_2^4$ is determined by the vectors $z_i = \frac{\partial Z}{\partial u^i}(i = 1)$ 1, 2, 3, 4). The vectors z_i are linearly independent on \tilde{S}_2^4 , defined by (38), and $T_p\tilde{S}_2^4$ has a basis (z_1,z_2,z_3,z_4) in every point $p\in \tilde{S}_2^4$.

The restriction of $\langle \cdot, \cdot \rangle$ from \mathbb{R}_2^5 to S_2^4 is a pseudo-Riemannian metric g on S_2^4 with signature (2,2). The non-zero components $g_{ij} = \langle z_i, z_j \rangle$ are

$$g_{11} = -1$$
, $g_{22} = -\sinh^2 u^1$, $g_{33} = \cosh^2 u^1$, $g_{44} = \cosh^2 u^1 \cos^2 u^3$. (39)

The hypersurface S_2^4 is equipped with an almost hypercomplex structure $H=(J_{\alpha}), (\alpha=1,2,3),$ where the non-zero components of the matrix of J_{α} with respect to the local basis $\left\{\frac{\partial}{\partial u^i}\right\}_{i=1}^4$ are

$$(J_1)_2^1 = -\frac{1}{(J_1)_1^2} = -\sinh u^1, \qquad (J_1)_4^3 = -\frac{1}{(J_1)_3^4} = \cos u^3,$$

$$(J_2)_3^1 = -\frac{1}{(J_2)_1^3} = -\cosh u^1, \qquad (J_2)_4^2 = -\frac{1}{(J_2)_2^4} = -\coth u^1 \cos u^3,$$

$$(J_3)_4^1 = -\frac{1}{(J_3)_1^4} = \cosh u^1 \cos u^3,$$

$$(J_3)_2^3 = -\frac{1}{(J_3)_3^2} = \tanh u^1.$$

$$(40)$$

Theorem 4.1 (4) The spherical pseudo-Riemannian 4-dimensional manifold, defined by (38), admits a hypercomplex pseudo-Hermitian structure on \tilde{S}_{2}^{4} , determined by (40) and (39), with respect to which it is of the class $W(J_{1})$ but it does not belong to W and it has a constant sectional curvature k=1.

Let us consider a conformal transformation determined by the function u which is a solution of the equation $du = -\frac{1}{2(2n-1)}(\theta_1 \circ J_1)$, where the nonzero component of θ_1 with respect to the local basis $\left\{\frac{\partial}{\partial u^i}\right\}$ (i=1,2,3,4) is $\theta_1\left(\frac{\partial}{\partial u^2}\right) = \frac{2\sinh^2 u^1}{\cosh u^1}$.

Since \tilde{S}_2^4 has a constant sectional curvature then the Weil tensor is vanishing \tilde{S}_2^4 has a constant sectional curvature then the Weil tensor is vanishing.

ishes, i.e. $\tilde{S}_2^{\bar{4}}$ is C-equivalent to a flat $\mathcal{K}(J_1)$ -manifold. If we admit that it is in

 \mathcal{K} , then according to Theorem 3.2 we obtain that the manifold $(\tilde{S}_2^4, H, G) \in \mathcal{W}$ which is a contradiction. Therefore the considered manifold is C-equivalent to a flat $\mathcal{K}(J_1)$ -manifold, but it is not a pseudo-hyper-Kähler manifold. By direct verification we state that the tensor S of this conformal transformation belongs to L_1 . Therefore (\tilde{S}_2^4, H, G) is an Einstein manifold.

References

- D. V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (IV), CLXXI (1996), 205–273.
- 2. G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. rend. Acad. bulg. Sci., 39 (1986), no. 5, 31–34.
- 3. A. Gray and L. M. Hervella, *The sixteen classes of almost Hermitian manifolds and their linear invariants*, Ann. Mat. Pura Appl. (IV), CXXIII (1980), 35–58.
- 4. K. Gribachev, M. Manev and S. Dimiev, Almost hypercomplex pseudo-Hermitian manifolds, Boll. Unione Mat. Ital. Sez. A, (to appear)
- 5. A. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191–214.
- 6. J. Wolf, *Spaces of constant curvature*, University of California, Berkley, California, 1972.