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The class of the hypercomplex pseudo-Hermitian manifolds is considered. The flat-
ness of the considered manifolds with the 3 parallel complex structures is proved.
Conformal transformations of the metrics are introduced. The conformal invari-
ance and the conformal equivalence of the basic types manifolds are studied. A
known example is characterized in relation to the obtained results.

Introduction

This paper is a continuation of the same authors’s paper ¢ which is inspired
by the seminal work ! of D. V. Alekseevsky and S. Marchiafava. We follow a
parallel direction including skew-Hermitian metrics with respect to the almost
hypercomplex structure.

In the first section we give some necessary facts concerning the almost
hypercomplex pseudo-Hermitian manifolds introduced in 4.

In the second one we consider the special class of (integrable) hypercom-
plex pseudo-Hermitian manifolds, namely pseudo-hyper-Kéhler manifolds.
Here we expose the proof of the mentioned in ¢ statement that each pseudo-
hyper-Kéhler manifold is flat.

The third section is fundamental for this work. A study of the group
of conformal transformations of the metric is initiated here. The conformal
invariant classes and the conformal equivalent class to the class of the pseudo-
hyper-Kéahler manifolds are found.

Finally, we characterize a known example in terms of the conformal trans-
formations.
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1 Preliminaries

1.1 Hypercomplex pseudo-Hermitian structures in a real vector space

Let V be a real 4n-dimensional vector space. By {a?,;ia 621-, aim 8‘21. }, i =
1,2,...,n, is denoted a (local) basis on V. Each vector x of V is represented

in the mentioned basis as follows

9 , 9 )
X2 (2 3 2
r==x -+ -+ u -+ v -, 1
or? yay’ out o’ (1)
A standard complex structure on V is defined as in °:
a _ 8 o _ _ 8 a _ _ @8 9 _ 8.
1907 = gyir Nigy = ~gar 15w = ~apr J1ag = au)
Joo 8 78 o g% % 5% _ "o, 2)
292t — Out? 2947 — v 29ut — ozt Y297 — Ayt
Jo2=_90 J O 0 7 0 __0 g5 0 _ 0
3927 — T ovir Y38yt — Bul’ 39u’ — T 0y’ Y39uT T Bxt-

The following properties about .J,, are direct consequences of (2)

J2=J2=J2 = Id, 3
JiJo=—JoJ1 = J3, Jodz3=—J3Jo=J1, J3J1=—JJz3=s.

If z € V,ie. x(a?,y’, u’,v?) then according to (2) and (3) we have
Jl'r(_yiaxiavi7_ui)7 JQ‘,I/‘(_uia_viaxiayi)a J3$(Uia_ui7yi7_‘ri)' (4)

Definition 1.1 (}) A triple H = (Jyi,J2,J3) of anticommuting complex
structures on V. with Js = J1Js is called a hypercomplex structure on V;

A bilinear form f on V is defined as ordinary, f : V xV — R. We denote
by B(V) the set of all bilinear forms on V. Each f is a tensor of type (0,2),
and B(V) is a vector space of dimension 1612

Let J be a given complex structure on V. A bilinear form f on V is called
Hermitian (respectively, skew-Hermitian) with respect to J if the identity
f(Jx, Jy) = f(x,y) (respectively, f(Jx, Jy) = —f(z,y) holds true.

Definition 1.2 (*) A bilinear form f on V is called an Hermitian bilinear
form with respect to H = (J,) if it is Hermitian with respect to any complex
structure Jo, a0 = 1,2,3, i.e.

f(Ja$>Jay):f($7y) Va,yeV. (5)

We denote by Ly = By (V) the set of all Hermitian bilinear forms on V.
The notion of pseudo-Hermitian bilinear forms is introduced by the following
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Definition 1.3 (*) A bilinear form f on V is called a pseudo-Hermitian
bilinear form with respect to H = (Jy, Ja, J3), if it is Hermitian with respect
to Jo and skew-Hermitian with respect to Jg and J,, i.e.

f(Jaxv Jay) = _f(‘]ﬁx7 Jﬁy) = _f(J’Ymv J’Yy) = f(m,y) v T,y € V, (6)

where (o, 8,7) is a circular permutation of (1,2,3).

We denote f € L, C B(V) (a« =0,1,2,3) when f satisfies the conditions
(5) and (6), respectively.

In ! is introduced a pseudo-Euclidian metric g with signature (2n,2n) as
follows

g(z,y) := Z (—2'a’ — y'b" + u'c’ +v'd’) (7)

i=1

where x (2%, v, ut, v?), y(a®, b, ¢t d) € V, i =1,2,...,n. This metric satisfies
the following properties

g(hz, iy) = —g(Jax, Jay) = —g(Jzx, J3y) = g(z,y). (8)

This means that the pseudo-Euclidean metric g belongs to L.
The form g; : g1(x,y) = g(J12,y) coincides with the Kéhler form ® which
is Hermitian with respect to J,, i.e.

CD(Jaxa Jay) = CD(xay)? o = 172737 ® e LO-

The attached to g associated bilinear forms g¢o : go(z,y) = g(Jaz,y) and
93 : g3(z,y) = g(Jsz,y) are symmetric forms with the properties

—go(J1z, 1y) = —go(Jaz, Joy) = g2(Jsx, J3y) = g2(z, y), )
—g3(J12, 1y) = g3(Jow, Joy) = —g3(J3w, J3y) = g3(x,y),

i.e. go € L3, g3 € Lo.
It follows that the Kéhler form & is Hermitian regarding H and the met-
rics g, g2, g3 are pseudo-Hermitian of different types with signature (2n,2n).
Now we recall the following notion:
Definition 1.4 (*) The structure (H,G) := (J1, Jo, J3,9,®, g2, 93) is called
a hypercomplex pseudo-Hermitian structure on V.

1.2 Structural tensors on an almost (H, G)-manifold

Let (M, H) be an almost hypercomplex manifold !. We suppose that g is a
symmetric tensor field of type (0,2). If it induces a pseudo-Hermitian inner
product in T,M, p € M, then g is called a pseudo-Hermitian metric on M.
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The structure (H,G) := (J1, J2, J3,9, P, g2, g3) is called an almost hypercom-
plex pseudo-Hermitian structure on M or in short an almost (H, G)-structure
on M. The manifold M equipped with H and G, ie. (M, H,G), is called
an almost hypercomplex pseudo-Hermitian manifold, or in short an almost
(H, G)-manifold. *

The 3 tensors of type (0,3) Fy, : Fu(x,y,2) = g((VIJa)y,z),a =1,2,3,
where V is the Levi-Civita connection generated by g, is called structural
tensors of the almost (H,G)-manifold. *

The structural tensors satisfy the following properties:

F1($7yﬂz) :FQ(J:’ J3yﬂz)+F3(x7ya JQZ)a
F2($7y72’) :Fg(fﬁ, le,Z)—FFl(l',y, J3Z)7 (10)
Fg(l',y,Z) = Fl(xa JanZ) - FQ(xaya le)a

Fl(xayaz) = —Fl(SC,Z,y) = _Fl(x7 J1y7 le)a
FQ(xayaZ) :Fz(x,z,y) :FQ(xa Jan J22)7 (11)
Fg(if,y,Z) = FS(vaay) = F3(.’£, J3y7 J3Z)

Let us recall the Nijenhuis tensors No(X,Y) = 1 [[Ja, Jo]] (X,Y) for al-
most complex structures J, and X,Y € X(M), where

[ Jal] (X, Y) = 2{[Jo X, JaY] — Jo [Ju X, Y] — Jo [X, J,Y] — [X, Y]},

It is well known that the almost hypercomplex structure H = (J,) is a
hypercomplex structure if [[J,, J4]] vanishes for each o = 1,2, 3. Moreover it
is known that one almost hypercomplex structure H is hypercomplex if and
only if two of the structures J, (o = 1,2,3) are integrable. This means that
two of the tensors N, vanish. !

We recall also the following definitions. Since g is Hermitian metric with
respect to J1, according to ? the class W; is a subclass of the class of Hermitian
manifolds. If (H,G)-manifold belongs to W,, with respect to Ji, then the
almost complex structure J; is integrable and

Fi(@,y,2) = 5y 9(2,9)01(2) — g(x, 2)01(y)
—g(x, J1y)01(J12) + g(z, J12)01 (J1y)],

where 61(-) = g¢"Fi(ei,ej,-) = 6®(-) for the basis {e;}{";, and § — the
coderivative.

On other side the metric g is a skew-Hermitian with respect to Jo and
Js, ie. g(Jox, Joy) = g(Jsx, J3y) = —g(x,y). A classification of all almost
complex manifolds with skew-Hermitian metric (Norden metric or B-metric)
is given in 2. One of the basic classes of integrable almost complex manifolds

(12)
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with skew-Hermitian metric is W4. It is known that if an almost (H,G)-
manifold belongs to Wi (J, ), « = 2,3, then J, is integrable and the following
equality holds

Fo(z,y,2) = %n [9(z,9)0a(2) + g(z, 2)0a(y) (13)
+9(z, Jay)la(Jaz) + 9(@, Jaz)0a(Jay)],

where 0, (2) = g F,(e;, €5, 2), a = 2,3, for an arbitrary basis {e; }1";.

When (12) is satisfied for (M, H, G), we say that (M, H,G) € W(J1). In
the case, (M, H,G) satisfies (13) for « = 2 or a = 3, we say (M, H,G) €
W(Js) or (M, H,G) € W(J3). Let us denote the class W := ﬂi:1 W(Jy).

The next theorem gives a sufficient condition an almost (H, G)-manifold
to be integrable.

Theorem 1.1 (*) Let (M, H,G) belongs to the class W(J,) Y W(Jg). Then
(M, H,QG) is of class W(J,) for all cyclic permutations (o, 3,7) of (1,2,3).

Let us remark that necessary and sufficient conditions (M, H, G) to be in

W are

2n

0, 0J, = —
° om—1

910J17 a:2,3. (14)

2 Pseudo-hyper-Kahler manifolds

Definition 2.1 (%) A pseudo-Hermitian manifold is called a pseudo-hyper-
Kéhler manifold, if VJ, = 0 (a = 1,2,3) with respect to the Levi-Civita
connection generated by g.

It is clear, then F,, = 0(a = 1,2,3) holds or the manifold is Kéhlerian
with respect to Jy, i.e. (M, H,G) € K(J,).

Immediately we obtain that if (M, H, G) belongs to K(J,) (1 W(Jg) then
(M, H,G) € K(J,) for all cyclic permutations («, 3,7) of (1,2, 3).

Then the following sufficient condition for a K-manifold is valid.
Theorem 2.1 (*) If (M, H,G) € K(J,) NW(Jg) then M is a pseudo-hyper-
Kdhler manifold (o # 0 € {1,2,3}).

Let (M*", H,G) be a pseudo-hyper-Kihler manifold and V be the Levi-
Civita connection generated by g. The curvature tensor seems as follows

R(X,Y)ZZVXVYZ—VyVXZ—V[X’y]Z, (15)
and the corresponding tensor of type (0,4) is

R(X.Y,Z,W) =g (R(X,Y)Z,W), VXY, ZWeX(M). (16)
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Lemma 2.2 The curvature tensor of a pseudo-hyper-Kdahler manifold has the
following properties:

R(X,Y,Z,W) = R(X,Y, 1 Z, W) = R(J; X, Y, Z,W)
= —R(X,Y, 1,2, ,W) = —R(LX, J,Y, Z, W) (17)
= —R(X,Y, J32, sW) = —R(J5X, J3Y, Z,W),

R(X,Y,Z,W) = R(X, ,Y, ,Z,W)
= —R(X, 1Y, ,Z,W) = —R(X, J5Y, JsZ,W).

Proof. The equality (17) is valid, because of (15), (16), the condition
VJ.e =0 (a = 1,2,3), the equality (8) and the properties of the curvature
(0,4)-tensor.

To prove (18), we will show at first that the property R(X, oY, JoZ, W) =
—R(X,Y,Z, W) holds. Indeed, from (17) we get

R(J,X,Y,Z,W) = R(X, LY, Z,W), R(X,Y,JoZ,W)=R(X,Y,Z, J,W)

and SxyzR(X,Y, J2Z, J;W) = 0, where Gx y,z denotes the cyclic sum
regarding X, Y, Z. In the last equality we replace Y by JoY and W by JoW.
We get

—R(X,J5Y, o Z, W) — R(JLY, Z, 1L X, W)+ R(Z,X,Y,W) =0.  (19)

(18)

Replacing Y by Z, and inversely, we get
—R(X, J2Z, JJY, W) — R(JZ,Y, b X, W)+ R(Y, X, Z, W) = 0. (20)
As we have
—R(J2Z,Y, b X, W) =—R(Z,J2Y, L X, W) = R(J.Y, Z, X, W),
with the help of (19) and (20) we obtain

—R(X, 1Y, J,Z,W) — R(X, Jo Z, JoY, W)
+R(Z,X,Y,W)+ R(Y,X,Z,W) =0.

According to the first Bianchi identity and (17), we obtain

“R(X, J2Z, J,Y,W) = R(J2Z, 1Y, X, W) + R(JY, X, J,Z,W)
= —R(Z,Y,X,W) = R(X, LY, . Z,W).

Then the equality (21) seem as follows

—2R(X, LY, b Z, W)+ R(Z, X, Y, W) - R(X,Y,Z, W)+ R(Y,Z,X,W)=0

By the first Bianchi identity the equality is transformed in the following
—2R(X, oY, J2Z, W) —2R(X,Y, Z,W) = 0,
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which is equivalent to
R(X, LY, s Z, W)= —-R(X,Y,Z,W). (22)

As the tensor R has the same properties with respect to J3, and to Ja, it
follows that the next equality holds, too.

R(X,JsY, JsZ, W) = —R(X,Y, Z,W). (23)
Using (22) and (23) for J; = JoJ3 we get successively that

R(X,Y,Z,W) = R(X, \Y, ,Z,W)
= R(X, Jo(J3Y), Jo(J32), W) = —R(X, J5Y, J3.Z, W),

which completes the proof of (18).

Now we will prove a theorem which gives us a geometric characteristic of
the pseudo-hyper-Kéhler manifolds.
Theorem 2.3 Fach pseudo-hyper-Kdihler manifold is a flat pseudo-Riemann-
ian manifold with signature (2n,2n).

Proof. Lemma 2.2 implies the properties

—R(X,Y,Z,W) = R(X, \Y, Z, , W)

— R(X, 1Y, Z, W) = R(X, JsY, Z, JsW). (24)

As J; = JoJ3, we also have the following

R(X, Y, Z, ZW) = R(X, Jo(J3Y), Z, Jo(JsW))
= —R(X,J5Y,Z,JsW) = R(X,Y, Z,W).

Comparing (24) with the last equality we receive
—-R(X,Y,Z,W)=R(X,\Y,Z, JW) = R(X,Y,Z,W),
or R =0.

3 Conformal transformations of the pseudo-Hermitian metric

The usual conformal transformation ¢ : § = e**g, where u is a differential
function on M*", is known. Since g, (-,-) = g(Ja-, ), the conformal transfor-
mation of g causes the same changes of the pseudo-Hermitian metrics go, g3
and the Kéhler form ® = g;. Then we say that it is given a conformal trans-
formation ¢ of G to G determined by u € F(M). These conformal transforma-
tions form a group denoted by C. The hypercomplex pseudo-Hermitian man-
ifolds (M, H,G) and (M, H,G) we call C-equivalent manifolds or conformal-
equivalent manifolds.
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Let V and V be the Levi-Civita connections determined by the metrics g
and g, respectively. The known condition for a Levi-Civita connection implies
the following relation

VxY =VxY +du(X)Y +du(Y)X — g(X,Y)grad(u). (25)
Using (25) and the definitions of structural tensors for V and V we obtain

F(X,Y,Z) = 2 [F(X,Y, Z) — g(X,Y)du(J: Z) + g(X, Z)du( 1Y)

+g(1 X, Y)du(Z) - g(1 X, Z)du(y)], (20

FolX.Y.2) = & [Fu(X.Y.2) + g(X.V)du(JoZ) + 9(X. )du( 1Y) o0
—9(JaX,Y)du(Z) — g(Ju X, Z)du(Y)]

for « = 2,3. The last two equalities imply the following relations for the
corresponding structural 1-forms
0, =60, —2(2n — 1)duo Jy, Oy =04 +4nduocJ,, ao=23. (28)
Let us denote the following (0,3)-tensors.

Py(z,y,2) = Fi(z,y, 2)
— 3@ 9(@,9)01(2) — g(z,2)01(y) (29)
—g(z, J1y)01(J12) + g(z, J12)01(J1y)] ,

Py (z,y,2) = Fo(x,y,2)
= 2 [9(2,9)0a(2) + (2, 2)0a(y) (30)
+g(x, Jay)ea(Jaz) +g(anaz)9a(Ja )]’ Q= 273'

According to (12) and (13) it is clear that
(M,H,G)eW(J,) < P,=0 (a=1,2,3).
The equalities (26)—(28) imply the following two interconnections
P,=¢*™P,, a=1,23; (31)

0,0 Jy +

2n2iléloJ1=9aoJa+2n2’zleloJ1, a=23. (32)
From (31) we receive that each of W(J,) (v = 1,2,3) is invariant with
respect to the conformal transformations of C| i.e. they are C-invariant classes.
Having in mind also (32), we state the validity of the following
Theorem 3.1 The class W of hypercomplex pseudo-Hermitian manifolds is
C-invariant.
Now we will determine the class of the (locally) C-equivalent K-manifolds.
Let us denote the following subclass W0 := {W | d (61 o J;) = 0}.
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Theorem 3.2 A hypercomplex pseudo-Hermitian manifold belongs to WO if
and only if it is C-equivalent to a pseudo-hyper-Kdahler manifold.

Proof. Let (M, H,G) be a pseudo-hyper-Kéahler manifold, i.e. (M, H,G) € K.
Then F, =60, =0 (o =1,2,3). Hence (28) has the form

01 = —2(2n—1)duo Jy, 0o =4nduo J,, a=2,3. (33)
From (26), (27) and (33) and having in mind (12) and (13) we obtain that

(M, H,G) is a W-manifold. According to (33) the 1-forms 0,0.J, (o = 1,2,3)
are closed. Because of (14) the condition d(f; o J;) = 0 is sufficient.
Conversely, let (M, H,G) be a W-manifold with closed 6; o.J;. Because of
(14) the 1-forms 6, o J, (a = 2,3) are closed, too. We determine the function
u as a solution of the differential equation du = _ZKTlfl)él o J1. Then by
an immediate verification we state that the transformation ¢! : g = e=2%g

converts (M, H,G) into (M, H,G) € K. This completes the proof.
Let us remark the following inclusions

KcWlcwcW(J,), a=1,23.

Let R,p,7 and R, p,T be the curvature tensors, the Ricci tensors, the
scalar curvatures corresponding to V and V, respectively. The following tensor
is curvature-like, i.e. it has the same properties as R.

¢1(5)(X7Y,27 U) = g(Ya Z)S(X’U) _g(X’Z)S(Yv U)
+9(X,U)S(Y, Z) — g(Y,U)S(X, Z),

where S is a symmetric tensor.
Having in mind (25) and (15), we obtain
Proposition 3.3 The following relations hold for the C-equivalent (H,G)-
manifolds
R=e*{R—1(S)},
p=p—trSg—2(2n—1)S, 7=e {7 —2(4n — 1)trS},
where

S(Y,Z)=5(Z,Y) = (Vydu) Z+du(Y)du(Z)—%du(grad(du))g(Y, Z). (35)

(34)

If (M,H,G) is a C-equivalent W-manifold to a -manifold, i.e.
(M, H,G) € W°, then Proposition 3.3 implies
Corollary 3.4 A W°-manifold has the following curvature characteristic

R= g {0 - 1o

where (X, Y, Z,U) = 391(9) = 9(Y, Z)g(X,U) — g(X, Z)g(Y,U).
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It is well known that the C-invariant tensor of each pseudo-Riemannian
manifold is the so-called Weil tensor W. From (34) we receive immediately

- 1 T
W =W, WRZ(Qn—l){wl(p)éln—lm}' (36)

Let us remark that the vanishing of the Weil tensor is a necessary and
sufficient condition a pseudo-Riemannian manifold to be conformal equivalent
to a flat manifold with dimension greater than 3.

This is confirmed by the combining of Theorem 2.3, Theorem 3.2 and
Corollary 3.4, i.e. (M, H,G) e WP iff W =0 on (M, H,G).

Since each conformal transformation determines uniquely a symmetric
tensor S by (35) then it takes an interest in the consideration S as a bilinear
form on T, M belonging to each of the components L,, (o =0, 1,2, 3).

Let S € Lg. In view of (5) trS = 0 holds and according to (34) we receive
7 = e~ 21 and an invariant tensor Wy, = R— mwl(p). When Wy vanishes

on (M, H, Q) then the curvature tensor has the form R = mwl(p).

In the cases when S € L, (o = 1,2,3) we consider (M, H,G) as an W'-
manifold. Then according to Theorem 2.3 and Theorem 3.2 we have R = 0
on the C-equivalent C-manifold of (M, H,G).

Now let S € Ly. By reason of g € L gve have a cause for the consideration

tr T

of the possibility S = Ag. Hence A = 72 = Sh(an=T) Then having in mind

(34) R = mm holds true. From here it is clear that if S € L; then
(M, H,G) is an Einstein manifold.

Let us consider the case when S € Ly. Then according to (6) trS vanishes,
and from (34) 7 vanishes, too. Because of g3 € Ly we consider S = Ags, whence
A= —%. Then (34) implies R = tr(izh)ﬂé]ﬂ where 73° is the following
tensor 73 with respect to the complex structure J = J3

(XY, Z,U) = —m(X,Y, JZ,U) — m(X,Y, Z, JU).

It is known 2 that 75 is a Kahler curvature-like tensor, i.e. it satisfies the prop-
erty m3(X,Y, JZ, JU) = —73(X,Y, Z,U). Therefore in this case R is Kahlerian
with respect to J3 and the tensor R*”® : R*(X,Y, Z,U) = R(X,Y, Z, J5U)
is curvature-like. Then we obtain immediately

T(R*)

_ T(R*JS) J3 _
T8an_1  PT Ty

Hence if S € Ly then (M, H, G) is a *-Einstein manifold with respect to Js.
By an analogous way, in the case when S € L we receive that (M, H, G)
is a *-Einstein manifold with respect to Js.
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4 A 4-dimensional pseudo-Riemannian spherical manifold with
(H, G)-structure

In 4 is considered a hypersurface S5 in RS by the equation

— () = (A () () () =1, (37)
where Z (21, 22 z3,2%,2%) is the positional vector of p € S3.
Let (u',u? u? u4) be local coordinates of p on S3. The hypersurface S5

is defined by the scalar parametric equations:

2! =sinhu' cosu?, 2% =sinhu'sinu?, 2% = coshu! cosu?cosu?

2z* = coshu! cosudsinu?, 2% = coshu!sinu3. (38)
Further we consider the manifold on S = S4\{(0,0,0,0,=+1)}, i.e. we omit
two points for which {u' # 0} ﬂ{u 2k+1)7/2,k € Z} The tangent space
T, S2 of S3 in the point p € S} is determined by the vectors z; = guzl (i =
1,2,3,4). The vectors z; are linearly independent on S3, defined by (38), and
T 52 has a basis (z1, 22, 23, 24) in every point p € S4.

The restriction of (-,-) from R} to S is a pseudo-Riemannian metric g
on S5 with signature (2,2). The non-zero components g;; = (z;, z;) are

g11 = —1, gos = —sinh?u!, g33 = cosh? u! , a4 = cosh? u! cos? u3. (39)

The hypersurface S is equipped with an almost hypercomplex structure
H = (J,), (o = 1,2,3), where the non-zero components of the matrix of J,

with respect to the local basis {%}j_

(J1)2 = — (Ji)f = —sinhu!, (J1)i= (Ji)é = cosu?,
() = 7(J1)§ = —coshul, ()i = *(Ji)g = —cothu' cosu®,  (40)
(Js)i _(-é)‘f = coshu! cosu?, (J3)3 = (Ji)g — tanhul.

Theorem 4.1 (*) The spherical pseudo-Riemannian 4-dimensional mani-
fold, defined by (38), admits a hypercomplex pseudo-Hermitian structure on
53, determined by (40) and (39), with respect to which it is of the class W(J1)
but it does not belong to W and it has a constant sectional curvature k = 1.

Let us consider a conformal transformation determined by the function
u which is a solution of the equation du = 2(2n 0 (01 o J1), where the

nonzero component of #; with respect to the local basis {81” } i=1,2,3,4)

2sinh? u!
is 01 (au2) ~ coshul! *

Since §2 has a constant sectional curvature then the Weil tensor is van-
ishes, i.e. S5 is C-equivalent to a flat C(.J;)-manifold. If we admit that it is in
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K, then according to Theorem 3.2 we obtain that the manifold (S4, H,G) € W
which is a contradiction. Therefore the considered manifold is C-equivalent
to a flat IC(Jp)-manifold, but it is not a pseudo-hyper-Kéhler manifold. By
direct verification we state that the tensor S of this conformal transformation
belongs to L;. Therefore (S§, H,G) is an Einstein manifold.
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