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Introduction

The Kaehlerian manifolds with B-metric have been introduced in [?].
These manifolds form the special class W0 in the classification of the almost
complex manifolds with B-metric, given in [?]. This most important class
is contained in each of the basic classes in the mentioned classification.

The natural analogue of the almost complex manifolds with B-metric
in the odd dimensional case are the almost contact B-metric manifolds,
classified in [?].

In [?] we constructed two types of hypersurfaces of an almost complex
manifold with B-metric as almost contact B-metric manifolds, and there we
determined the class of these hypersurfaces of a W0-manifold.
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An important problem in the differential geometry of the Kaehlerian
manifolds with B-metric is the studying of the manifolds with constant
totally real sectional curvatures [?].

In this paper we study some curvature properties of hypersurfaces of sec-
ond type of a Kaehlerian manifolds with B-metric and particularly curvature
properties of nondegenerate special sections.

1. Preliminaries

1.1. Notes on almost complex manifolds with B-metric.
Let (M ′, J, g′) be a 2n′-dimensional almost complex manifold with B-

metric, i.e. J is an almost complex structure and g′ is a metric on M ′ such
that:

(1.1) J2X = −X, g′(JX, JY ) = −g′(X,Y )

for all vector fields X, Y on M ′ . The associated metric g̃′ of the manifold
is given by g̃′(X,Y ) = g′(X,JY ). Both metrics are necessarily of signature
(n′,n′).

The tensor field F ′ of type (0,3) on M ′ is defined by F ′(X,Y ,Z) =
g′((∇′X J)Y ,Z), where ∇′ is the Levi-Civita connection of g′, and X,Y ,Z ∈
X(M ′) (the Lie algebra of the differentiable vector fields on M ′).

A classification with three basic classes of the almost complex manifolds
with B-metric with respect to F ′ is given in [?]. In this paper, we shall
consider only the class W0 : F ′ = 0 of the Kaehlerian manifolds with B-
metric belonging to each of the basic classes. The complex structure J is
parallel on every W0-manifold, i.e. ∇′J = 0.

The curvature tensor field R′ defined by

R′(X, Y )Z = ∇′X∇′Y Z −∇′Y∇′XZ −∇′[X,Y ]Z

possess the property R′(X,Y, Z, U) = −R′(X, Y, JZ, JU) on a W0-manifold.
Using the first Bianchi’s identity and the last property of R it follows
R′(X,JY, JZ, U) = −R′(X,Y, Z, U).

Therefore, the tensor field R̃′ : R̃′(X, Y, Z, U) = R′(X,Y, Z, JU) has the
properties of a Kaehlerian curvature tensor and it is called an associated
curvature tensor.
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For every nondegenerate section α′ in Tp′M
′, p′ ∈ M ′, with a basis {x, y}

there are known the following sectional curvatures with respect to g [?]:
k′(α′; p′) = k′(x, y) = R′(x,y,y,x)

π′1(x,y,y,x)
– the usual Riemannian sectional curva-

ture;
k̃′(α′; p′) = k̃′(x, y) =

fR′(x,y,y,x)
π′1(x,y,y,x)

– an associated sectional curvature,

where π′1(x, y, y, x) = g′(x, x)g′(y, y)− [g′(x, y)]2 .

The sectional curvatures of an arbitrary holomorphic section α′ (i.e.
Jα′ = α′) is zero on a Kaehlerian manifold with B-metric [?].

For totally real sections α′(i.e. Jα′ ⊥ α′) is proved the following

Theorem 1. [[?]]Let M ′ (2n′ ≥ 4) be a Kaehlerian manifold with B-
metric. M ′ is of constant totally real sectional curvatures ν ′and ν̃ ′, i.e.
k′(α′; p′) = ν ′(p′), k̃′(α′; p′) = ν̃ ′(p′) whenever α′ is a nondegenerate totally
real section in Tp′M

′, p′ ∈ M ′, if and only if

R′ = ν ′
[
π′1 − π′2

]
+ ν̃ ′π′3.

Both functions ν ′and ν̃ ′are constant if M ′is connected and 2n′ ≥ 6.

The essential curvature-like tensors are defined by:

π′1(x, y, z, u) = g′(y, z)g′(x, u)− g′(x, z)g′(y, u),

π′2(x, y, z, u) = g′(y, Jz)g′(x, Ju)− g′(x, Jz)g′(y, Ju),

π′3(x, y, z, u) = −g′(y, z)g′(x, Ju) + g′(x, z)g′(y, Ju)

− g′(y, Jz)g′(x, u) + g′(x, Jz)g′(y, u),

1.2. Notes on almost contact manifolds with B-metric
Let (M, ϕ, ξ, η, g) be a (2n+1)-dimensional almost contact manifold with

B-metric, i.e. (ϕ, ξ, η) is an almost contact structure determined by a tensor
field ϕ of type (1, 1) , a vector field ξ and a 1-form η on M satisfying the
conditions:

(1.2) ϕ2X = −X + η(X)ξ, η(ξ) = 1,

and in addition the almost contact manifold (M, ϕ, ξ, η) admits a metric g

such that

(1.3) g(ϕX,ϕY ) = −g(X, Y ) + η(X)η(Y ),
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where X,Y are arbitrary differentiable vector fields on M , i.e. X,Y ∈
X(M)[?].

There are valid the following immediate corollaries:

(1.4) η ◦ ϕ = 0, ϕξ = 0, η(X) = g(X,ξ), g(ϕX,Y ) = g(X,ϕY ).

and ϕ is an endomorphism with rank 2n.
The associated metric g̃ given by g̃(X,Y ) = g(X,ϕY ) + η(X)η(Y ) is a

B-metric, too. Both metrics g and g̃ are indefinite of signature (n, n + 1).
Further, X, Y, Z, U will stand for arbitrary differentiable vector fields on

M and x, y, z, u – arbitrary vectors in tangential space TpM to M at an
arbitrary point p in M . The Levi-Civita connection of g will be denoted
by ∇. The tensor field F of type (0,3) on M is defined by F (X,Y ,Z) =
g((∇X ϕ)Y ,Z).

If {ei, ξ} (i = 1, 2, . . . , 2n) is a basis of TpM and (gij) is the inverse matrix
of (gij), then the following 1-forms are associated with F :

θ(·) = gijF (ei, ej , ·), θ∗(·) = gijF (ei, ϕej , ·), ω(·) = F (ξ, ξ, ·).

A classification of the almost contact manifolds with B-metric is given
in [?], where eleven basic classes Fi are defined. In the present paper we
consider the following classes:

F4 : F (x,y,z) = −θ(ξ)
2n

{g(ϕx,ϕy)η(z)+g(ϕx,ϕz)η(y)};

F5 : F (x,y,z) = −θ∗(ξ)
2n

{g(x,ϕy)η(z)+g(x,ϕz)η(y)};
F6 : F (x, y, z) = F (x, y, ξ)η(z) + F (x, ξ, z)η(y),

F (x,y,ξ)=F (y,x,ξ), F (ϕx,ϕy,ξ)=−F (x,y,ξ)

θ(ξ) = θ∗(ξ) = 0;

F8 : F (x,y,z) = F (x,y,ξ)η(z)+F (x,ξ,z)η(y),

F (x,y,ξ)=F (y,x,ξ), F (ϕx,ϕy,ξ)=F (x,y,ξ).

(1.5)

The classes Fi ⊕Fj , etc., are defined in a natural way by the conditions
of the basic classes. The special class F0 : F = 0 is contained in each of
the defined classes. The F0

i -manifold is an Fi-manifold (i = 1, 4, 5, 11) with

closed associated 1-forms.
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The following tensors are essential curvature tensors on M :

π1(x, y, z, u) = g(y, z)g(x, u)− g(x, z)g(y, u),

π2(x, y, z, u) = g(y, ϕz)g(x, ϕu)− g(x, ϕz)g(y, ϕu),

π3(x, y, z, u) = −g(y, z)g(x, ϕu) + g(x, z)g(y, ϕu)

− g(y, ϕz)g(x, u) + g(x, ϕz)g(y, u),

π4(x, y, z, u) = η(y)η(z)g(x, u)− η(x)η(z)g(y, u)

+ η(x)η(u)g(y, z)− η(y)η(u)g(x, z),

π5(x, y, z, u) = η(y)η(z)g(x, ϕu)− η(x)η(z)g(y, ϕu)

+ η(x)η(u)g(y, ϕz)− η(y)η(u)g(x, ϕz).

(1.6)

In [?] it is established that the tensors π1 − π2 − π4 and π3 + π5 are
Kaehlerian, i.e. they have the condition of a curvature-like tensor L:

(1.7) L(X, Y, Z, U) = −L(X,Y, ϕZ, ϕU)

Let R be the curvature tensor of ∇. The tensors R and R̃ : R̃(x, y, z, u) =
R(x, y, z, ϕu) are Kaehlerian on every F0-manifold.

There are known the following sectional curvatures with respect to g and
R for every nondegenerate section α in TpM with a basis {x, y}:

k(α; p) = k(x, y) =
R(x, y, y, x)
π1(x, y, y, x)

, k̃(α; p) = k̃(x, y) =
R̃(x, y, y, x)
π1(x, y, y, x)

.

In [?] are introduced the special sections in TpM : a ξ-section (e.g.
{ξ, x}), a ϕ-holomorphic section (i.e. α = ϕα) and a totally real section
(i.e. α ⊥ ϕα).

The canonical curvature tensor K is introduced in [?]. The tensor K is
a curvature tensor with respect to the canonical connection D defined by

(1.8) DXY = ∇XY +
1
2
{(∇Xϕ)ϕY + (∇Xη)Y.ξ} − η(Y )∇Xξ.

The connection D is a natural connection, i.e. the structural tensors are
parallel with respect to D. Let us note that the tensor K out of F0 has the
properties of R in F0.

We recall the following theorems:
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Theorem 2. [[?]] Let (M,ϕ, ξ, η, g) (dimM ≥ 5) be an F0-manifold. M

is of constant totally real sectional curvatures ν and ν̃, i.e. k(α; p) = ν(p),
k̃(α; p) = ν̃(p), whenever α is a nondegenerate totally real orthogonal to ξ

section in TpM , p ∈ M , iff

R = ν [π1 ◦ ϕ− π2] + ν̃π3 ◦ ϕ.

Both functions ν and ν̃ are constant if M is connected and dimM ≥ 7.

Theorem 3. [[?]] Let (M, ϕ, ξ, η, g) (dimM ≥ 5) be an F0
i -manifold (i =

1, 4, 5, 11). The manifold M is of constant totally real sectional curvatures
ν and ν̃ of the curvature tensor K, i.e. k(K)(α; p) = ν(K)(p), k̃(K)(α; p) =
ν̃(K)(p), whenever α is a nondegenerate totally real orthogonal to ξ section
in TpM , p ∈ M , iff

K = ν(K) [π1 ◦ ϕ− π2] + ν̃(K)π3 ◦ ϕ.

If M is connected and dimM ≥ 7 then functions ν(K) and ν̃(K) satisfy
the following conditions:

a) for i = 1 dν = 1
2n [ν.θ∗ ◦ ϕ− ν̃.θ] , dν̃ = 1

2n [ν.θ + ν̃.θ∗ ◦ ϕ] ;
b) for i = 4 dν = − 1

nθ(ξ)ν̃η, dν̃ = 1
nθ(ξ)νη;

c) for i = 5 dν = − 1
nθ∗(ξ)νη, dν̃ = − 1

nθ∗(ξ)ν̃η;
d) for i = 11 dν = 0, dν̃ = 0.

2. Curvatures on W0’s hypersurfaces of second type

Let (M ′, J, g′), dimM ′ = 2n′ = 2n + 2, be an almost complex man-
ifold with B-metric. We determine a (2n + 1)-dimensional differentiable
hypersurface M embedded in M ′ by the condition M : g̃′(Z,Z) = 0 for a
vector field Z on M ′. It is clear that g′(Z, JZ) = 0. At every point we put
g′(Z,Z) = cosh2 t , t > 0 for the sake of the impossibility Z to be a main
isotropic direction and in view of definiteness.

We choose the time-like unit normal N = 1
cosh tJZ, i.e. g′(N, N) = −1.

Hence, JN is a space-like unit tangent vector field on M .
Let us recall the following

Definition 1. [[?]] The hypersurface M of an almost complex manifold
with B-metric (M ′, J, g′), determined by the condition the normal unit N
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to be isotropic regarding the associated B-metric g̃′ of g′, equipped with the
almost contact B-metric structure

ϕ := J + g′(·, JN)N, ξ := −JN, η := −g′(·, JN), g := g′|M

will be called a hypersurface of second type of (M ′, J, g′).
In the case when (M ′, J, g′) is a Kaehlerian manifold with B-metric (i.e.

a W0-manifold), in [?] it is ascertained that every hypersurface of second
type belongs to the class F4 ⊕F5 ⊕F6 ⊕F8 and

(2.1)
F (X, Y, Z) = g(AX, Y )η(Z) + g(AX,Z)η(Y ),

θ(Z) = tr A.η(Z), θ∗(Z) = tr(A ◦ ϕ)η(Z), ω(Z) = 0.

The second fundamental form of the hypersurfaces in consideration is
AX = −ϕ∇Xξ. The mentioned classes of hypersurfaces of second type are
characterized by A as follows [?]:

F0 : A = 0; F4 : A = − θ(ξ)
2n ϕ2; F5 : A = − θ∗(ξ)

2n ϕ;
F6 : A ◦ ϕ = ϕ ◦A , Aξ = 0 , trA = tr(A ◦ ϕ) = 0;
F8 : A ◦ ϕ = −ϕ ◦A , Aξ = 0.

For the curvature tensors R′ and R of the Kaehlerian manifold (M ′, J, g′)
and of its hypersurface of second type (M, ϕ, ξ, η, g), respectively, we have

R′(x, y, z, u) = R(x, y, z, u)+π1(Ax,Ay, z, u), R′(x, y)N = − (∇xA) y+(∇yA) x.

Hence and because of Theorem ?? we obtain:

R(x, y, z, u) =
{

ν ′
[
π′1 − π′2

]
+ ν̃ ′π′3

}
(x, y, z, u)− π1(Ax, Ay, z, u),

R(x, y, ϕz, ϕu) = −
{

R− ν ′π4 − ν̃ ′π5

}
(x, y, z, u)− [π1 + π2] (Ax,Ay, z, u),

R(x, y)ξ =
[
ν ′π4 − ν̃ ′π5

]
(x, y)ξ, R′(x, y)N =

[
ν ′π5 + ν̃ ′π4

]
(x, y)ξ.

Therefore

(2.2) (∇xA) y − (∇yA) x = −ν ′π5(x, y)ξ − ν̃ ′π4(x, y)ξ.

Having in mind that for hypersurfaces of second type are valid the equa-
tions: g′(y, Jz) = g(y, ϕz), π′1 = π1, π′2 = π2, π′3 = π3, we obtain the
following
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Proposition 1. A hypersurface of second type of a Kaehlerian manifold
with B-metric has the following curvature properties:

R(x, y, z, u) =
{

ν ′ [π1 − π2] + ν̃ ′π3

}
(x, y, z, u)− π1(Ax, Ay, z, u),

τ = 4n2ν ′ − (trA)2 + tr A2, τ∗ = 2n (2n− 1) ν̃ ′ − trA. tr (A ◦ ϕ) + tr
(
A2 ◦ ϕ

)
,

for a ξ-section {ξ, x} the sectional curvature k doesn’t depend on A

k (ξ, x) = ν ′ − ν̃ ′
g(x, ϕx)

g(x, x)− [η(x)]2
,

for a ϕ-holomorphic section
{
ϕx, ϕ2x

}
and for a totally real section {x, y},

orthogonal to ξ, respectively:

k
(
ϕx, ϕ2x

)
=

π1(Ax,Aϕx, ϕx, x)
π1(ϕx, ϕ2x, ϕ2x, ϕx)

, k (x, y) = ν ′ − π1(Ax,Ay, y, x)
π1(x, y, y, x)

.

When (M, ϕ, ξ, η, g) is a hypersurface of second type ofW0-manifold, the
equations (??) and (??) imply

K(x, y, z, u) = R(x, y, ϕ2z, ϕ2u) + π1(Ax,Ay, ϕz, ϕu).

If (M ′, J, g′) has constant totally real sectional curvatures in addition,
then for K we obtain the following

Proposition 2. Let (M,ϕ, ξ, η, g) be a hypersurface of second type
of a W0-manifold (M ′, J, g′) with constant totally real sectional curvatures.
Then K of (M, ϕ, ξ, η, g) is Kaehlerian and

K(x, y, z, u) =
{

ν ′ [π1−π2−π4] + ν̃ ′ [π3+π5]
}

(x, y, z, u)− [π1−π2] (Ax,Ay, z, u),

τ(K) = 4n(n− 1)ν ′ − [
θ2(ξ)− θ∗2(ξ)

]− tr (ϕ ◦A ◦ ϕ ◦A) + trA2,

τ̃(K) = −4n(n− 1)ν̃ ′ + 2θ(ξ)θ∗(ξ)− tr
(
ϕ ◦A2

)− tr (A ◦ ϕ ◦A) .
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3. Curvatures on W0’s hypersurfaces of second type,

belonging to the main classes

Now, let (M, ϕ, ξ, η, g) belong to the widest main class F4⊕F5 of hyper-
surfaces of second type. Let us recall that a class of almost contact B-metric
manifolds is said to be main if the tensor F is expressed explicitly by the
structural tensors ϕ, ξ, η, g. So, in this class for the second fundamental ten-
sor we have

(3.1) A = − 1
2n

[
θ(ξ)ϕ2 + θ∗(ξ)ϕ

]
, trA = θ(ξ), tr (A ◦ ϕ) = θ∗(ξ).

Having in mind Proposition ??, we obtain the next

Corollary 1. If a hypersurface of second type of a Kaehlerian mani-
fold with B-metric is F4 ⊕F5-manifold, then it has the following curvature
properties:

R = ν ′ [π1 − π2] + ν̃ ′π3

− 1
4n2

{
θ2(ξ) [π1 − π4] + θ∗2(ξ)π2 + θ(ξ)θ∗(ξ) [π3 + π5]

}
,

τ = 4n2ν ′ − 1
2n

[
(2n− 1) θ2(ξ) + θ∗2(ξ)

]
,

τ∗ = 2n (2n− 1) ν̃ ′ − n− 1
n

θ(ξ)θ∗(ξ),

k
(
ϕx, ϕ2x

)
= −θ2(ξ) + θ∗2(ξ)

4n2
, k (x, y) = ν ′ − θ2(ξ)

4n2
, where g∗(·, ·) = g(·, ϕ·).

Remark 1. We can obtain the corresponding properties for the classes
F4, F5 and F0, if we substitute θ∗(ξ) = 0, θ(ξ) = 0 and θ(ξ) = θ∗(ξ) = 0,
respectively.

Using the equations (??) and (??), we express the canonical connection
explicitly for the class F4 ⊕F5

DXY = ∇XY +
θ(ξ)
2n

{g(x, ϕy)ξ − η(y)ϕx}− θ∗(ξ)
2n

{
g(ϕx, ϕy)ξ − η(y)ϕ2x

}

It is clear that if the hypersurface in consideration belongs to F4 ⊕ F5,

then it is
(F0

4 ⊕F0
5

)
-manifold. Let (M,ϕ, ξ, η, g) ∈ F0

4⊕F0
5 , i.e. (M,ϕ, ξ, η, g)
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is (F4 ⊕F5)-manifold with closed 1-forms θ and θ∗. The canonical curva-
ture tensor K of every

(F0
4 ⊕F0

5

)
-manifold is Kaehlerian and it has the

appearance

K = R +
ξθ(ξ)
2n

π5 +
ξθ∗(ξ)

2n
π4

+
θ2(ξ)
4n2

[π2 − π4] +
θ∗2(ξ)
4n2

π1 − θ(ξ)θ∗(ξ)
4n2

[π3 − π5] .

Then, using Corollary ??, we ascertain the truthfulness of the following

Corollary 2. If the manifold is a hypersurface of second type of a
Kaehlerian manifold with B-metric and constant totally real sectional cur-
vatures, then K is expressed by the following way:

K =
[
ν ′ − θ2(ξ)− θ∗2(ξ)

4n2
+

ξθ∗(ξ)
2n

]
(π1 − π2) +

[
ν̃ ′ − 2θ(ξ)θ∗(ξ)

4n2
− ξθ(ξ)

2n

]
π3

− ξθ∗(ξ)
2n

(π1 − π2 − π4) +
ξθ(ξ)
2n

(π3 + π5) .

We compute the expression (∇xA) y − (∇yA) x using (??) and we com-
pare the result with (??). Thus we get the relations

(3.2) ν ′ = −ξθ∗(ξ)
2n

+
θ2(ξ)− θ∗2(ξ)

4n2
, ν̃ ′ =

ξθ(ξ)
2n

+
2θ(ξ)θ∗(ξ)

4n2
.

Therefore K is Kaehlerian and

K = −ξθ∗(ξ)
2n

[π1 − π2 − π4] +
ξθ(ξ)
2n

[π3 + π5] ,

R = −ξθ∗(ξ)
2n

[π1 − π2] +
ξθ(ξ)
2n

π3

− θ2(ξ)
4n2

[π2 − π4]− θ∗2(ξ)
4n2

π1 +
θ(ξ)θ∗(ξ)

4n2
[π3 − π5] .

We solve the system (??) with respect to the functions θ(ξ) and θ∗(ξ)
and we get

(3.3) θ(ξ) = ±2n

√
a

2
, θ∗(ξ) = ±2n

ν̃ ′√
2a

, a = ν ′ +
√

ν ′2 + ν̃ ′
2
.

Since ν ′ and ν̃ ′ are pointly constant for M ′4 (n = 1) and they are absolute
constants for M ′2n+2 (n ≥ 2) (Theorem ??), then the functions θ(ξ) and
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θ∗(ξ), which determine the hypersurface of second type as an almost contact
B-metric manifold, are also pointly constant on M3 and constants on M5.

Hence for n ≥ 2 we have

Theorem 4. Every
(F0

4 ⊕F0
5

)
-manifold of dimension at least 5, as

a hypersurface of second type with 1-forms θ = θ (ξ) η and θ∗ = θ∗ (ξ) η

of a Kaehlerian manifold with B-metric and constant totally real sectional
curvatures ν ′and ν̃ ′ has K = 0 and the following curvature properties for R:

R = −θ2(ξ)
4n2

[π2 − π4]− θ∗2(ξ)
4n2

π1 +
θ(ξ)θ∗(ξ)

4n2
[π3 − π5]

= −a

2
[π2 − π4]− ν̃ ′

2

2a
π1 +

ν̃ ′

2
[π3 − π5] ,

τ(R) =
θ2(ξ)
2n

− (2n + 1)
θ∗2(ξ)

2n
= n.a− (2n + 1)

n.ν̃ ′
2

a
,

τ∗(R) = θ(ξ)θ∗(ξ) = 2n2ν̃ ′,

k (ξ, x) =
θ2(ξ)− θ∗2(ξ)

4n2
+

2θ(ξ)θ∗(ξ)
4n2

g(x, ϕx)
g(ϕx, ϕx)

= ν ′ + ν̃ ′
g(x, ϕx)
g(ϕx, ϕx)

k
(
ϕx, ϕ2x

)
= −θ2(ξ) + θ∗2(ξ)

4n2
= −ν ′ − ν̃ ′

2

a
= const,

k (x, y) = −θ∗2(ξ)
4n2

= − ν̃ ′
2

2a
= const, where a = ν ′ +

√
ν ′2 + ν̃ ′

2
.

References

[1] A. Borisov and G. Ganchev, Curvature properties of Kaehlerian mani-
folds with B-metric, Math. and Educ. in Math., Proc. of 14-th Spring
Conference of UBM, Sunny Beach, 1985, 220–226.

[2] G. Ganchev and A. Borisov, Note on the almost complex manifolds with
Norden metric, C. R. Acad. Bulgare Sci., 39 (1986), no. 5, 31–34.

[3] G. Ganchev, K. Gribachev and V. Mihova, Holomorphic hypersurfaces of
Kaehlerian manifolds with Norden metric, Plovdiv. Univ. Paisĭı Khilen-
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