|
|
|
|
Факултет по математика и информатика - Числени методи 1 |
 |
Приложна математика (бакалавър) редовно обучение | изпит | | | | Целта на курса е изучаването на основните методи за числено решаване на математически задачи и тяхното прилагане за числено изследване на математически модели. На лекциите, освен теоретични знания, се дават и конкретни числени примери. На лабораторни знания както детайлно вникване в същността на съответния метод, той се демонстрира и във вид на компютърна програма. Учебният материал включва методи за решаване на уравнения и системи линейни уравнения (точни и итерационни методи), апроксимации и функции (интерполиране, средноквадратични и равномерни приближения), числено диференциране и интегриране и др. Изискват се знания по: линейна алгебра, аналитична геометрия, реален и функционален анализ, а също така и компютърна грамотност. | | | - Въведение в изчислителната математика. Грешки при приближени изчисления. Видове грешки – абсолютна, относителна, от закръгляне, пълна грешка.
- Числено решаване на уравнения с едно неизвестно. Метод на разполовяването. Метод на хордите. Метод на допирателните. Комбиниран метод. Метод на простата итерация. Метод за едновременно намиране на всички корени на полиномни уравнения.
- Норми на вектори и матрици. Теореми за сходимост на матрични редици и редове.
- Точни методи за системи линейни уравнения. Метод на Гаус-Жордан. Метод на квадратния корен. Метод на прогонката за квазидиагонални системи уравнения и устойчивост на метода.
- Изчисляване на детерминанти, обръщане на матрици и решаване на комплексни системи.
- Итерационни методи за системи линейни уравнения. Конструиране на методите, сходимост, оценка на грешката. Модификация на Гаус-Зайдел.
- Теория и практика на интерполирането - интерполиране с алгебрични, тригонометрични и обобщени полиноми - задачи на Лагранж, Ермит, интерполиране със сплайн-функции. Интерполационни полиноми с разделени и крайни разлики.
- Апроксимация на функции, базираща се на метрични критерии за близост. Средноквадратични приближения, метод на най-малките квадрати, равномерни приближения. Теорема на Вале-Пусен и теорема на Чебишов за алтернанса.
- Апроксимиране на функционали – числено диференциране и числено интегриране. Квадратурни формули на Нютон-Коутс, на правоъгълника, на трапеца, на Симпсън. Оценка на грешката. Квадратурни формули на Гаус и Чебишов. Понятие за кубатурни формули.
|
|
|
|
Актуално
|
- Класиране и провеждане на ИД 2, РЕДОВНО ОБ.
- Практика по специалността - БИТ, СТД, 3 курс, РЕД. ОБ.
- Практика по специалността - И, СИ, 3-ти курс, РЕД. ОБ.
- Студентски мобилности С ЦЕЛ ОБУЧЕНИЕ, Еразъм+, II семестър 2025/26
- ВТОРА избираема дисциплина, I сем., 2025/26, РЕДОВНО ОБ.
- Студентски практики по проект BG05SFPR001-3.002-0001 "От висше образование към заетост"
- Относно ИД при хон. ас. Илиан Иванов
- Учебен отдел няма да работи на 25, 26 и 27 ноември 2025 г.
- Покана за участие в Международната научна конференция IMEA'2025
- Преподавателски мобилности по Еразъм+
- Преподаватели от ФМИ продължават работата си по проекта STEAME ACADEMY
- Възможност за стаж в Япония за студенти и докторанти
- Факултетен съвет - 19.11.2025
- Конкурс за стипендии на БНБ
|
|
Още новини
|
|
Архив на новините
|
|
 |
 |
 |
| O © 2024 ФМИ |